Menoufia University Faculty of Engineering Shebin El-Kom Mechanical Power Eng. Department Post Graduate: Master

Subject: Mechanics and Dynamics of

Combustion (MPE627)

Academic Year: 2017-2018 - 1th Semester

Time Allowed: 3 hr. Date: 10/1/2018

Note: Assume any data required, state your assumption clearly. Answer all the following Questions Combustion tables are allowed

Table of Some Bond and Resonance Energies (Given)

_		111
Ou	estion	(1)

(25 Marks)

- (1.1) Describe: Thermodynamic equilibrium and Gibbs free energy.
- (1.2) Show that the fugacity of a real gas is related to the pressure P and compressibility factor Z by $\ln \frac{f}{p} = \int_0^{P_r} (Z-1) d(\ln P_r)_T$, where P_r is the reduced pressure $P_r = \frac{p}{p_{critical}}$. Discuss the use of this equation.
- (1.3) Using bond energies, determine the heat of formation of gaseous normal Butane (C_4H_{10}) .

Question (2)

(25 Marks)

- (2.1) Explain: Dissociation, Mixture fraction, Bond energy, Heat of formation and Heat of reaction.
- (2.2) Propane (C₃H₆) is burned with 30% excess air. Determine
 - (a) Air-fuel ratio.
- (b) The gravimetric analysis of wet flue gases.
- (c) The mixture dew point.
- (d) The heat of reaction at T_P = 2000 K.
- (e) Mean specific heat at T_P . (f) The adiabatic flame temperature if T_R =298 K

Question (3)

(25 Marks)

- (3.1) Discuss: Rates of reactions and their functional dependence.
- (3.2) Explain: One-step chemical reactions of various orders.

(25 Marks)

- (4.1) Explain: consecutive reactions, competitive reactions, opposing reactions, chain reactions and surface reactions.
- (4.2) A mixture of 1 mole of N₂ and 0.5 mole of O₂ is heated to 4000 K at 1 atm pressure, resulting in an equilibrium mixture of N_2 , O_2 and NO only. If the O_2 and N2 were initially at 298 K and were heated steadily, how much heat was required to bring the final mixture to 4000 K on the basis of 1 initial mole of N₂.

<u>مع تمنیاتی لکم بالنحاح والتوفیق</u> Dr. Mohammed Said Farag

<u>Table: Some Bond and Resonance Energies</u> Bond Energies in Some Diatomic Molecules¹⁶

Bond	Energy, D_{298}^{σ} (kcal/mol)	Bond	Energy, D_{298}^{σ} (kcal/mol)
н-н	104.20	C-0	≥ 141.97
F-F	37.95	C-Cl	94.89 ± 6.93
CI-CI	57.98	Br-C	66.92 ± 5.02
Br-Br	46.08	C-I	49.95 ± 5.02
I-I	36.11	C-F	131.93
C-H	80.88 ± 0.29	N≡N	225.94 ± 0.14
H-N	≤ 81.02	C=C	145.08 ± 5.02
H-O	102.20	o=0	119.11
CI-H	103.16	Al-O	122.13 ± 0.72
Br-H	87.55	C≡N	180.28 ± 2.39
H-1	71.32		

Mean Bond Energies 14,16

Bond	Energy (kcal/mol)	Bond	Energy (kcal/mol)
Br-Br	46	H-F	135
C-C	85	H-H	103
C=C	145	HI	72
C≡C	194.3	H-P	76
C-Br	67	H-S	81
C-Cl	78	I-I	36
C-F	102	N-H	88
C-H	98.1	N-N	60
C-I	. 64	N=N	225
C-N	81	O-H	109
C≡N	210	O-N	150
C-0	86	0-0	33.1
C=O	173	o=0	117
C-S	64	P-Br	64
CI-CI	57	P-Cl	78
F-F	36	P-P	48
H-Br	88	S-Cl	60
H-Cl	103	S-S	50

Resonance Energies of Selected Compounds

Compound	Resonance Energy (kcal/mol)	
Benzene, C ₆ H ₆	48.9	
-COOH group (carboxyl group)	28	
CO ₂	33	
Naphthalene, C ₁₀ H ₈	88.0	
Aniline, C ₆ H ₅ NH ₂	69.6	