Menofiya University		st Faculty of Engineering (Mechanical Power) Tim Allowed: 3 hour
Second Semester Examination, 2015-2016	Material Science	
Date of Exam: 8/6/2016	Code: PRE 111	
Total mark: 70 marks		
Production Eng. Dep.		

Answer all the following questions
 QUESTION NO. 1

(20 Mark)
A) A composite bar made of aluminum and steel is held between the supports as shown in Fig.1. The bars are stress free at a temperature of $37^{\circ} \mathrm{C}$. What will be the stress in two bars when the temperature is $\mathbf{7 0}{ }^{\circ} \mathrm{C}$, if (a) the supports are unyielding; and (b) the supports yield come nearer to each other by 0.10 an? It can be assumed that the change of temperature is uniform all along the length of the bar. Take $\mathrm{Es}=210 \mathrm{GPa} ; \mathrm{Ea}=74 \mathrm{GPa} ; \alpha_{\mathrm{s}}=11.7 \times 10^{-6} /{ }^{\circ} \mathrm{C}$; and $\alpha_{\mathrm{a}}=23.4 \times 10^{-6} /{ }^{\circ} \mathrm{C}$.

Fig (1)
B) A flat stainless steel $100 \mathrm{~mm} \times 200 \mathrm{~mm} \times 20 \mathrm{~mm}$ is compressed by forces in the plane of the plate so that the new lateral dimensions are $99.99 \mathrm{~mm} \times 199.99 \mathrm{~mm}$. assuming that the plate is free to expand in the thickness direction and that it is uniformly stressed. Take ($\mathrm{E}=200 \mathrm{GPa}$ and $v=0.3$).
Compute the change in thickness.

1) If the plate thickness was constrained to remain constant, what stress would be applied in the thickness direction?

UESTION NO. 2

A) A solid steel shaft has transmitted 75 Kw at 200 rpm . Taking the allowable shear stress as $70 \mathrm{MN} / \mathrm{m}^{2}$. Find the suitable diameter of the shaft, if the maximum torque transmitted on each revolution exceeds the mean by 30%. Also find the angle of twist in a length of 2 metres. Take $G=84 \mathrm{GN} / \mathrm{m}^{2}$.
B) A $\mathbf{2 5 0} \mathbf{~ m m ~ (d e p t h) ~} \times 150 \mathrm{~mm}$ (width) rectangular beam is subjected to maximum bending moment of $750 \mathrm{kN} / \mathrm{m}$. Determine:
i) The maximum stress in the beam
ii) If the value of E for the beam material is $200 \mathrm{GN} / \mathrm{m}^{2}$. Find out the radius of curvature for that portion of the beam where the bending is maximum.

QUESTION NO. 3

(17 Mark)
A) Discuss briefly with a flow chart the extraction process of iron from iron ore. Demonstrate the basic requirements of the material selection?
B) Draw the following planes in the case of a FCC structure: (213), (011) and (321). Determine APF of this structure.
C) For BCC iron, compute (a) the interplanar spacing and (b) the diffraction angle for the (220) set of planes. The lattice parameter for Fe is $\mathbf{0 . 2 8 6 6 ~ \mathrm { nm }}$. Also, assume that monochromatic radiation having a wavelength of 0.1790 nm is used, and the order of reflection is 1 .
D) Aluminum (melting point $660^{\circ} \mathrm{C}$) and silicon (melting point $1420^{\circ} \mathrm{C}$) are assumed to be completely soluble in the liquid state and completely insoluble in the solid state. They form a eutectic at $578^{\circ} \mathrm{C}$, the eutectic composition being 13% silicon and 87% aluminum:-

1) Draw to scale the phase diagram of the alloy system Al-Si, labeling the lines, fields and points
2) For $7 \% \mathrm{Si}$:
i) Give the initial and final solidification and the freezing range.
ii) Describe the changes which take place during fall of temperature from the molten stage to room temperature.
3) When this alloy has cooled to temperature $20^{\circ} \mathrm{C}$ below (i) what is the relative amount of solid/liquid phases.

QUESTION NO. 4

(18 Mark)
A) Differentiate between:-

- The Substitutional and interstitial
- The eutectic reaction and the eutectoid reaction
B) Write short notes about the followings:
- Annealing - Ledeburite - Quenching - Austenite - Martensite
C) Consider 1.5 kg of a $\mathbf{9 9 . 7 \%} \mathrm{Fe}$ and $0.3 \% \mathrm{C}$ iron-carbon alloy that is cooled to a temperature below the eutectoid temperature.
i) Compute the amount of proeutectoid ferrite and pearlite that forms.
ii) Composition of $\mathrm{Fe}_{3} \mathrm{C}$ and ferrite (α).
iii) Determine the amount of cementite that forms.
D) Determine the phase structure during the cooling of steel from TTT diagram, Fig. 2 in the following:
i) Rapidly cool to $350^{\circ} \mathrm{C}$, hold for 150 s, quench to $\mathrm{T}_{\text {room }}$
ii) Rapidly cool to $400^{\circ} \mathrm{C}$, hold for 500 s , quench to $\mathrm{T}_{\text {room }}$
iii) Rapidly cool to $650^{\circ} \mathrm{C}$, hold for 25 s , rapidly cool to $400^{\circ} \mathrm{C}$, hold for 102 s , quench to $\mathrm{T}_{\text {room }}$
iv) Rapidly cool to $120^{\circ} \mathrm{C}$, hold for 48 s , quench to $\mathrm{T}_{\text {room }}$

$* * * * * * * *$ GOOD LUCK ${ }^{* * * * * * * * * * ~}$

This exam measures the following ILOs															
Question number	Q1	Q2	Q3	Q4	Q4	Q1	Q2	Q3	Q4	Q4	Q1	Q2	Q3	Q4	Q4
skills	Knowledge \& Understanding					B2	B2	B4	B2	B4	C1	C 1	C3	C3	C3
						Intellectual					Professional				

