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ABSTRACT

The ©problem of the unsteady infiltration from buried plpes into
unsaturated solls s solved numerically wusing the Alternating
Direction Impllclt (ADI) difference method. The water content
distribution and the location of the wetting front can be predicted at
any lnstant of time.

INTRODUCTION

"nfiltration {5 an example of the general phenomenon of water
movement in porous medla. Unsteady Inflltratlon £from burled plpes s
of practlical Importance in the flelds of agriculture and englneering.,
In lirrigation process, it is of great importance to determline the
changes in water content and lts distrlbution during the 1zrigatian
period. Furthermore, it l!s important from the practlical point of viev
Eo know the posltlon of the wetting front, since the excessive lnfilt-
ratlon ls not deslrable when the vertlcal advance of the wetting front
reaches the lower end of the rxoot zone, whlch means a wasate of water.
Moreover, the development of the molsture proflles 1a essential to
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overcome dralnage problems, ang to contrxol the molsture content in the
so0ll.

The dynamics of the one-dimenslonal Infliltration has been studied
iptensively [2]),13), but relatively less work has been devoted to the
more complicated problems of two and three-dimensional systems. A
genaral flowv eguation for molsture movement in unsaturated soll was
developed by ,combining Darcy's law with the equation of <continulity

(2. An lterative procedure using Boltzmann transformation vas
developed by Philip [3) to reduce the nonlinear diffusion eguation
cbtained by [2] to a nonlinear ordinary dlifferential eguation.

Philip (4] directed his study towards the two-dimensional preblem of
Infiltration from a semicircular furrow and the three-dimensional
problem of infiltration from a hemispherical cavity. The soil
diffuslvity vas consldered constant, thus the governing equations wvere
changed 1Inte & linearized form. The problem of the two-dlmensicnal
transient transfer of water from rectangular unsaturated or partially
unsaturated soll slabs was solved by [6] using the ADI dlifference
method. Also the ADI methed was adopted by {8) to molve the unsteady
two-dimensional flow medium for unsaturated soils. The results of this
study confirmed the validlty of the ADI algorithm for solving the
unsteady two-dimenslonal flowv problems. Infilltratlion from a horizontal
semi-cylindrlcal furrow Into several solls and porous media, was
investigated by Peck and Talsma [7]. They gubjected thelir
experimental findings to approximate solutions for commulative
infiltration. The two-dimensional infiltratlon from a semicircular
furrow 1into wunsaturated soil was solved numexrically by (9], vwho
developed a numerical technique using the ADI method., The obtalined
numerjical results were verified experimentally.

The problem of infiltration from burlied pipes inte unsaturatad
s0ils has been scarcely lnvestigated. Therefore the present gtudy Iis
dlrected to thls case and the ADI method is applied to Iinvestigate the
follovwling objectlves:

1} £inding the molisture content distributlon in the soil,
ii) specifying the location of the wetting front as a function of
time.

COVERNING EQUATIONS
The continuity equation describing the moisture flow in
unsaturated sotls is given by
06/0t = - div v , . (1)

vhere & ls the volumetric molsture content, t ta the time and Vv is
the volumetrlc flux of water which 13 represented by its components;:

v, =-D{8) d8/dx ,
Vy=-D{B} 98/9y
and V,=-D(8) d8/dz + K(B) , (2)

where D(0) i3 the dlffusivity and K{(8) ls the caplillary conductivity
of the sotl.
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Substltutlng equation (2) into (1), then
90/3t = 3/dx [ D(®) 36/3x | + 3/Jy ( D{B) B8/0y 1 +
3/dz [ D(e} Bes3z ) - dK(L)/O=2. - (3}

This equation is known as the flow equation.
For the two-dimentional Lnflltratlion we have

d8/dt = 3/3x | D(B) 3B/Ox 1 + ds9z [ D(B} 86/9z 1 - JK(B)/dz. {4)

HATHEMATICAL MODEL

A parallel set of equally spaced clircular pipes Is placed at an
approprlate depth inside the so¢ll, Figure (1). The plpes are oriented
in the direction of the Y axis, which means that the flow Is Iindepe-
ndent of the Y coordlnate.

Due teo symmetry, the soil medium can be subdivided into identical
rectangular soll slabs, Each slab acts as an Lndependent unit in the
sense that there is no flow from one slab to another.
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Fig.{(1l) Schematic dlagram of a homogeneous soil
irrigated by a sat of circular buried

pipes squally spaced at distances of 2ZX.

It ls assumed that the lnitlal moisture content in the soll s
unlformly distributed and is sufficiently low. The inflltration
through the slab 1s gqoverned by eguation (4} with the linitial
conditions:
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0 s x 35 X

-2, $ z s I
'oreover, the boundary condltlons azel
- Along the semlclircla AHF :
e =0, for x2 +z® =R’ , tz20. ‘ (6)

'~ aAlong the symmetry lines EB and DC :

x = D -2 s z s -R
desdx = 0 for x =0 R" sz 32 , £ 20 (7)
x = X -lezsz
3~ Along the soil surface ED
-p(®) 96/dz + K(8) = 0 for z = -2; , 0 s x £ X ,t 2 0. (8)
1- Along the line BC:
-D(®) J8/dz + K(B) = 0 for z =2 , 0 sx £ X , tzx0 (9)

HETHCR OF SOLUTION

The ADI technique approximates the partial differential equation

4) and the conditions (5) to (9) by means of dlifference eguatlons.

'he obtained equatlons refer to a set of points of a rectangular grid

with increments Ax,/Az and 1/2 At in the (x,z,t) space. The polnts
are denoted by {j,k,n) where:

x = (3 - 11 Ax . j =0, ,2 ,...... R
z = (k - Ky - 1) Doz, k=0, ,2 ,......,K+Ky ;
t=n Ot . n=20,1,2 .......,0;

It

knoving that J = entier (X/AAx) + 2, K entier ( Z//Az) + 2

and Ki = entler (2,/4.2).

The values of the dependent variables at the grid point (J,k,n} in
the flow medium 1Is denocted by ej“’k' The donmalin boundaries x = @,
# =X, 2z =~Z1 and =z = I correspond to 3 =1, 3 = J-1, k = 1 and
K+K1-1. Thus on all slides of the domain the grid is extended by

‘e grid lincrement beyond the boundary of the domain. 2Zero and N
lues of time correspond to the beginning and the end of the
infiltraticen period respectively.

In the ADI method each time step At is further subdivided Iinto
iwo different stages. During the f%;gt stage the soluticn 1s advanced
irom 8" to an Intermediate value 8 by the following equation [11]:

~
il
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n n+% n

A (85 ) (6(D{6) &8} ], (a(D{8) 68}], dk (.8}

— Adaes + - . (1o
172 Ot (L) 2 (Hz)? dz

The left-hand side of the partial differential equation (10) is
evaluated by the forward difference operator £\ as

n n+h n
O 8y,x ) = 83,k - By,x . (11

while the first two terms of the right hand side of eqguation (1l0) are
calculated by the central difference operator 9d:

nt+#4 n
{(3({D(8) 66}]x {d(D(B) 66]z

5 +

H

(A% (Onz)?

o2 nt% n+% n+% nt n+% n+h
{L/{Ox)7 DI85,y , k1 (Be1, k-89, k) — DIBj-yg kI (B3 g-B35.3,k))

2 n n n n n 141
+[l/(£}z] IID(Bj,kfﬁ}(Bj,kfl_ej,k) = D(Bj,k-ﬁ)(ej,k - Bj,k—l])' (12)

The laat term on the right-hand silde of eguation {10} ls=s
approximated wusing Taylor serles expansion. Neglecting all terms of
the second and higher powers of Nz, we get

o{kig] n n
=(l!(2£}zl]IK(8j,k+l - K‘Bj,k—l)" {13)
i,k

oz

Substitution from {(11), (12) and (13) intc (1D) gives

n+% n
9j,k - Bj,k 1 [D{en+ }(an+5 en+F:
T S i+, (B340, ~ 95, k!
(1/2) At (Ax)? ’ It ’

n+k N+t n+h
"D %, k(85,6 - 85-1 k1]

1

{D(Bn )ten Bn )
Skt k -
( z)z 3.kt 3, k41 1,k

n n ]
D8y, k-#) 85,k - 85, k-1}]

il n
-(1/(2A2)1 (K85 x4} - K(By, 1) ], (14)

This equation 1is a finite dlfference approximation of the
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diffegential equation (4). The boundary condltions to be satisfled by
(e1"*™ in equations (6) and (7) can be wrltten 1In the £inite

difference form. They are respectlvely:

+h
eg'k = Bg for 3 = entler (x / Qx) + 1,
x = (&2 - ((k - Az Ik
and k = Ky~kg+i,K1-kat+Z,..,K1,-.,Kitkg, Kyjtkg+l;
kg = entier (z/Az) + 1, (15)
n+% n+k
80,k = B3,k for k =1, 2, 3,.....Ky - kg
and k = Ky+kg+2, Kytkgt3d, ..., K+K1-2, K+Ky-1
n+% nt+%
and BJ,R = 9‘]_2"‘ for k¥ =1, 2, 3, ...... ' K+Kl_2fK+Kl_1' (16)
The finlte dlffer$gce eguation (14) 1s impliclt only 1in the x
direction In which an is unknewn; 1t is also explicit In the =z
dlrection in which & 1Isa known. It is clear that equation {14) 18 non-
n+k n+k
linear since the value of D(9j,y x) depend on B85,y x £or which
n+%
solutions are belng saught. The arguments 84:%,k of the funtion
+%

n
D{@j,y x! In equation (14) are approximated by means of the following
expllcit difference equation based on eguatlon {4):

nth n
Pik T %3k ! (D18} y(es 6 )
e — Jt#,k itl,kx ~ 93,x
(172100t (AAx) !

n n n
- D(B5-%,k) (85, k ~ 85-1,x)]

1 n n n
t — (Dloy, x4u?i84 k41 ~ ej,kl

(Az)
n n n
- D(By k-9 (65, - 64,x-111}
1

n n
- — {K(85,ke1?) - K(ej,k—lll- (171}
2 Az

Assuming a square grid,l.e. Dx = Az and putting
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AN At FAN -
o o= = ’ = —
2(Ax) 2 2(Az12 $1Az)

and rearranging equation (17), the following equation is obtained:

nth n n n n n n n
83,k = B,k * o {D(B4+u,x} 9541,k — B3, k) - DBy, kI{Bq,k - 84-3,k!

n N n n n n
+ DBy, xaep) (04, kel - ej,k) - D(Gj’k_ﬁ)(ej’k - Bj'k_lil
n n
-6 [K(8j,x+1} - K(Bj k-1)]- (18}

n+%
Equatlion (18} enables the calculation of the predlictor 85,5 dlrectly

n
directly from the previous distributlon 854 ). Eguation (14) <can be
transformed Into a more convenient form us{nq elementary algebralc
manipulation which glves the followlng equation:

n n+# n nt% n n+k n
B,k 83-1,k * By,k 8y, * Cyx Bys1,k = By,k o (19)
n nt+h

wvhere Aj,k - D(ej_ﬁ’k],

n n+h n+%
Bj,k = L +t o Di{B5_4, k) + aDI(Bj+y4,x),
n ntk
Cj’k = -a D(ej+ﬁ,kl
n n n n
and  Ejy,x = @ D(By k-w) B,x-1 * {1 - @ DiBy yx_y4)

n n n n
- a D(Bj,k+H]] ej,k + a D(ej,k+ﬁ) ej,k+l
n n
- B8 (Ki8j,x+1) - KOy x-21)7 .

For fixed k the system of linear eqguations (19) and (16) with (15}
n+H

forms a closed system of equations with equal number of unknowns 84 .
This sgystem is independent of the other systems corresponding to
different wvalues of Kk, The solution of the system k represents the
distributlon of the moisture content along the horizontal 1line k of
n+h
the grid. varying k from 1 to (K+K;-1), the values of 84 x can be
obtained at all nodes of the grld at the end of the First stage
correspondling to t =(n+%)/\t.

buring the second stage of the APl time step, the sclutlon 1is
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n+k ntl

advanced from @ to @ by the following £finite difference
approximation:

n+l nth .

83,k -0,k +4 n+% n+k

=[1/(£}X)2] { D(BJ+5 k1(65+1,kx — 94,k }

(1/2) 4t

n+ n+4 nt#
- D(SJ W,k (85, - 05-1,k))

+1 n+l n+l
+ {1/(&2} ][ D(GJ k{.‘{!][ej k+1 - ejlk)

n+l n+l n+l
- D (Bj k-#) (83 x - 8j,x-1)]1

n+l n+l
S[1/72002) VIK{By geyd - K[aj’kulli {21)
The boundary conditlons to be satisfied by en+l are (6), (8) and
{%3). In the finite difference form these become respectively!
n+l
84,x = By for ¥ = K1 2 entler (z//\z} + 1,
2 H
z = le - ({(1-1) %)
and 3 = 1,2,3,....,35 ;
Jg = entier (R/ Ax) + 1, (223
n+l n+l
85,0 = Oj’z for 3 =1, 2, ..., J-1 {23)
n+1l n+i

il

and 04 g+gi = B§,gekl-2 for J 1, 2, ..., J~1, {24]
The flnite dlfferen;i approximation (21) is implicit in the
z directlon in which 8" i3 unknown, it is also explicit In the x

t%

n+l
direction in which 8" is known. The argument B84 k.4 of the functlions

n+l t1 .
D(B84,xr4! and K(Gj ke#) in  {21) are predlicted by an explicit
difference equation similar to (17):

n+l +h th n+% n+k%
84,k ® Bj x ta ID(Bj+ﬁ k)(ﬁjfl k - 89,k !
n+h% n+4% n+H +4 n+k n+%
- DtBj k) (03, k = 8j-1,k) *+ Dl9j kew) 184 k41 ~ B35, x)
Ntk nth n+k nt+h

- Dtaj,k"‘ﬁltej,k - Gj,k_]_)} - G[K(Gj k"‘l] = K(ej K~ l)]‘ (25
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where « and 3 have the same meanlng as defined above. Equatien

n+l
(agg can be solved for 84 k directly fxom the computed values of

Again eguation (21) can be transformed lnto a more compact form by
elementary algebralc transformation which glves the following
egquation:

n+% n+l n+k n+l n+% n+l n+k
Ay, O3,k-1 * Byx B3,k * €,k Oy, k41 T By (26
n+h n+l
whersa Aj,k = - a Dlej'k_yl'l, 127
n+h n+l n+l
Bj'k = 1+ a D(Bj'k_yl] £ o D[Bj’k.flﬁ}, {28)
n+% n+l
Cj,k = — @ D(Bj,k+en) (29)
and n+% n+h n+h n+k
Ey,x = @ D(Bj.y x} 63-1,x + (1 - a DI9y.y4 !
n+k% n+k n+% n+%
@ DlBy,y, k) B4, t D ‘9j+h k) 8541,k
+1 n+l
- i [K(BJ k+1!? — K63 x_3)1. {30)

For each fixed value of j the system of linear -equatlions (28},
(22, (23) and (24) constitutes a closed system of linear algebraic

n+l
equatlions of equal number of unknowns &4, ,x . Each system i3
independent of the other systems correspondinq to different values of

n+

J. The solution of the syatem J glves the values Bj i along the
vertical line of the grld. Thus changling J from 1 to (J-1) ylelds
the dlstribution at all nedes of the grid.

Thus the full cycle of the ADI g&&hod 133 conpleted. The whole
process ls lteratlvely repeated for 6 a ¢+ ++..and so oOn.

The systems of equationz (19} and (26] can be written in matrix
form as:

A B = E (31)

where A Is a tridiagonal real matrlx and 8 E denote the
assoclated real column vectors.

Equation {31} can be wrltten In an explicit form, which can be
easlly sclved by an adaptation of the Gausslan algorithm.

BEEBULTS AND DISCUSSION

This method was applled to a sandy clay loam soll vhose
diffusivity and caplliary conductivity are determined experimentally -
and fltted by the following expresslons: [
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-6
D(8) = 64.865 x 10 exp(23.3858 ©) for ©, % © 5 O_

and ~13 2
K(8) = 64.5490 x 1073 exp(64.8697 @ - 43.7416 62)

for 8y £ B8 2 Bg

where 8f is the initial water content
and 8s is the saturation water content.

In the step-wise numerical solution, one encounters the problems
of constructlon of finite difference systems, thelr method of
solution, thelr stability, their covergence and their accuracy.

It was found that the implicit alternating direction eguatlons
arising from equation (4) are unconditionally stable for all values of
B At, Ax and Az [B). Constant time steps /At and space steps FAS
and Az are lnvolved in the stability (convergence) criteria. For
sandy clay loam soil several step sizes of ¥ At =0.25, 0.5 and 1.0
min., and Ax = Az = 1.0, 2.0, and 4.0 cm. were tested for
convergence. It was found that for % At = 0.5 min. and Ax = Az =
2.0 ecm. convergence occurred and the calculated water content
distributlon at each node for the (n+l) time steps was similar to that
calculated for % At = 0.25 min. and Ax = Az = 2.0 cm.{within a
variation of 0.04% in water content).

The geometrical conflguration of the £low medium 1is shown in
Flgure (1). The dimensions are chosen as: Zj = 40 cm., X = 45 cm. and
Z = 50 cm. The origin (0,0} of the coordinates was placed at the
centre of the plpe; a pipe of radius 5 cm. was considered.

Flgure (2) shows the water content distribution during the two-
dimensional inflltration from the burled plpe into the sandy clay loam
soll. The water content distributlion is glven for a serles of time at
119, 303 and 567 mlnstea3 The wetting front (lines of 6 taken arbltra-
rily as 8 = 0.20 c¢cm™/cm™) which separates the initlial water content
from higher water contents in the flow medium progresses in different
directions with time at decreasing rate.

CONCLUZION

A computer program was developed to solve the two-dimenslional flow
egquation of water infiltration from buried plpes 1Iinto unsaturated
solls by the modified ADI method, where the variable domalin of
solution 1is enlarged according to the propagatlon of the wetting
front. The water content distribution was obtained at different serles
of time.

The influence of the gravitational term on the water content dist-
ribution in the flov medium was detected. The vertical advance of the
lines of lso-water content in the positive z direction is greater than

he horlzontal advance in the x direction which exceeds the vertical
_dvance in the negative z directlon. This is due to the gravitational
effect, as the £low equation (4) contains the term 3dk/dz. The
horizontal flow is considered as a simple diffusion, while the
vertical one is a superposition of two components, one of which is the
gravitational flow due to the wvertlical gravitational potential
gradlent and the other Is the dlffusion downwards due to the gradient
of the water content, (2] and [(61].



The results show also that the lines of 1so-vater content cicse to
the water source are wide apart compared wlth those close to the
wetting front. Thus the molsture gradlents are steeperx closa to the
wetting £romt than those near the water sogurce. The steep water
content gradient at the wetting front is caused by the strone

dependence of the capillary conductivity (and hence diffusivity} on
water content.
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