
https://erjm.journals.ekb.eg  ERJ 

Engineering Research Journal 

Faculty of Engineering 

Menoufia University 

ISSN: 1110-1180 

DOI: --------- 

 

 

ERJ, PART 1, Elec. Eng., Vol. 46, No. 4, October 2023, pp. 441- 449                                                     441 

 

 

Economic Dispatch of Multi-Microgrid Systems with Renewable Energy Sources 

Using Marine Predator Algorithm 

 

Adel A. Abou El-Ela1, Ragab A. El-Sehiemy2, Nora A. Abdel Aziz1, Mohamed T. Mouwafi1,*      
 

1 Electrical Engineering Department, Faculty of Engineering, Menofia University, Egypt 
2Electrical Engineering Department, Faculty of Engineering, Kafrelsheikh University, Egypt 

 (* Corresponding author: m_mouwafi@sh-eng.menofia.edu.eg)  
 

 

ABSTRACT   

The optimal operation of multi-microgrids (MMGs) can be achieved by interconnection of them for power 

exchange between them and by reducing the total operation costs of different types of renewable energy 

resources (RERs) in MMGs. Therefore, solving the economic dispatch (ED) problem becomes one of the main 

challenges for the optimal operation of RERs by finding the optimal scheduling of these sources. This paper 

presents a procedure based on the marine predator optimizer (MPO) algorithm for solving the ED problem in 

MMGs. The minimization of total operating costs of RERs and battery energy storage (BES) is considered an 

objective function (OF) while satisfying the system constraints. The proposed algorithm is applied to two-

microgrid systems connected together for solving the ED problem. The numerical results obtained for separate 

operation of MGs and MMGs using the proposed MPO are compared with other techniques such as jellyfish 

search (JS), particle swarm optimization (PSO), and differential evaluation algorithm (DEA) to prove the 

robustness of the proposed MPO for the economical operation of the MMGs. 

Keywords: Economic dispatch; multi-microgrids; renewable energy resources; battery energy storage; marine 

predator algorithm.

1. Introduction 

Consumption of electricity leads to an increasing 

requirement for renewable energy generation. 

Therefore, microgrids (MGs) enhance efficiency and 

decrease disruption[1,2]. MG is expected to provide a 

solution to a variety of challenges facing traditional 

centralized networks[3,4]. The benefits of small-scale 

power plants positioned directly on the load center 

include reduced power losses, improved efficiency, 

and less supply disruption. MGs are also believed to 

be better suited as renewable energy resources (RERs) 

for distribution system applications [5]. To handle the 

different issues in the islanded mode of MG, 

interconnection of two or more MGs is carried out [6]. 

The interconnection of multi-microgrid (MMG) 

systems improves the performance of the overall grid 

while keeping the flexibility of island model 

operation. By linking MMGs, the system becomes 

more resilient to severe weather and natural disasters 

and performs better as a whole, all the while retaining 

the ability to operate in an islanded model and reaping 

the rewards of MGs[7-9]. Various studies have been 

conducted with regard to the interconnection of 

several MGs into the system. Difficulties coordinating 

distribution networks in MMGs, which might be 

connected to the central grid, other MGs, or islands, 

were presented in [10]. 

ED seeks to identify the best-generating unit 

scheduling by considering certain operating 

constraints to minimize the cost of generation [11-13]. 

In [14], a distributed primal-dual consensus method 

was used to minimize a sum of quadratic generation 

cost functions that contain the supply-demand balance 

constraint, the individual constraint, the capacity 

constraint, and the ramp-rate constraint. In [15], a 

parallel and distributed computation method was 

applied for dynamical economic dispatch over a cyber-

physical system. However, the proposed algorithm's 

convergence stages are dependent on the beginning 

points and only examine a single source of energy 

from thermal generators. In [16], particle swarm 

optimization (PSO) and genetic algorithm (GA) were 

used to solve the ED of MMG systems while meeting 
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power system restrictions. In [17], an enhanced 

cuckoo search algorithm (CSA) was used to present a 

complete economic model for power dispatch 

optimization in MMGs. In [18], the PSO was applied 

to solve the ED problem in the MMG system. 

The optimization issue of ED is very difficult, multi-

constraint, and extremely nonlinear. Therefore, 

current metaheuristic optimization techniques such as 

GA [19], and PSO [20] were used to solve the ED 

problem. Recently, one of powerful metaheuristic 

optimization techniques called the marine predator 

algorithm (MPO) is used to solve different 

optimization problems with more effectively and 

efficiently than other optimization techniques, because 

of robustness, speed of convergence, and simplicity 

[21]. 

From the previous literature review, it can be 

concluded that, many published papers used old 

optimization techniques and ignored the RERs in 

solving the ED problem in MMGs. Therefore, this 

presents an appropriate MPO for solving the ED 

problem in separate MGs and MMGs by identifying 

the best scheduling of RERs and battery energy 

storage (BES). By comparing the acquired results with 

other methods such as jellyfish (JS) [22,23], 

differential evaluation algorithm (DEA) [24], and 

PSO. The main contributions of this paper are 

enumerated as follows: 

(i) Applying the proposed MPO successfully for 

solving the ED problem in MMGs by finding the 

optimal scheduling of RERs considering the total 

costs of MMG operation. 

(ii) Investigating two modes of MGs operation (two 

separate MGs and MMGs) for each objective 

function (OF) to prove the superiority of the 

proposed algorithm when compared with other 

methods. 

(iii) Evaluating the proposed MPO for solving the ED 

problem in MMG by comparison the results of 

statistical analysis with other methods. 

(iv) Proving the superiority of the proposed MPO for 

solving the ED problem in MMG by comparing 

the obtained results with other techniques such as 

DE, PSO, and JS. 

This paper is structured as follows: Part 2 introduces 

the problem formulation by modeling of RERs, the 

OF, and system constraints at MG and MMG. The 

proposed MPO is depicted in Part 3. Part 4 presents 

the MPO approach for solving the ED problem in 

MMG. Part 5 contains applications with numerical 

findings and discussion, while Part 6 contains the 

paper's ultimate conclusion. 

2. Problem Formulation 

This paper aims to solve the ED problem in MMG 

considering RERs by minimizing the total operation 

cost. 

2.1 Modelling of generation sources 
 

Different types of generation sources such as 

conventional generators, wind, solar, and BES are 

considered. The modeling of these types is formulated 

as follows: 

• Modelling of conventional generators 

The optimal operation of conventional generators 

aims to minimize the total fuel cost. Therefore, the 

total fuel cost of conventional sources can be 

formulated as [25]: 

( ) 2

1

GN

c i i i i i

i

Min F a P b P c
=

= + +
 

(1) 

where, Pi is the power generated from generation unit 

i, ai, bi, and ci are the coefficients of the fuel cost 

function for generation unit i, and NG is the total 

number of conventional generators. 

• Modelling of wind-power generation 

The output power of wind generation unit (Pwo) can 

be expressed as:  

( ) 3

,

0 w ci w co

r

wo w w i ci w r

r r w co

if V V or V V
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P if V V V
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where, Vw, Vr, and Vco are the wind, rated, cut-in and 

cut-out speeds, respectively. Pwo and 
,

r

w iP are the 

output and rated power generated at wind speed v, 

respectively. 

Now, the cost of wind turbine cost can be expressed as 

[26]: 

10w wF P= 
         (3) 

• Modelling of solar power generation 

The cost function of solar generation units can be 

cleared as [22]: 

2.5s sF P= 
           (4) 

where, PS is the output power from PV units. 
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• Modelling of BES 

The cost function of BES can be obtained as: 

2.5b bF P= 
          (5) 

where, Pb is the stored power in kW. 

2.2 Objective function (OF) 

The OF in this paper aims to minimize overall cost 

of the MMG, which can be formulated as: 

( ) ( ) ( ) ( )
1 1 1 1 1 1

MG d s w bN N N N NT

c w s b

m t i j k l

Min F F t F t F t F t
= = = = = =

  
= + + +  

   
      (6)                                   

where, Fc(t) is the total generation cost of conventional 

sources such as diesel. Fw(t), Fs(t), and Fb(t) are the 

total generation cost of wind, solar, and battery units 

at time t, respectively. NMG, Nd, Ns, Nw, and Nb are the 

total number of MGs, diesel, solar, wind, and battery 

units, respectively. T is the time horizon. 

2.3 System constraints 

The OF in Eq. (6) is minimized under the following 

constraints [27]: 

1 1 1 1

( ) ( ) ( ) ( ) ( ),
d w s bN N N N

d i w j sk bl D

i j k l

P t P t P t P t P t t T
= = = =

+ + + =    
       (7) 

min max , ,di di di dP P P i N t T           (8) 
min max , ,wj wj wj wP P P j N t T   

    (9) 
min max , ,sk sk sk sP P P k N t T      (10) 

Eq. (7) aims to check the power balance constraint 

between generation sources and load demand. Eqs. 

(8), (9), and (10) represent the inequality constraints of 

the active power generated from diesel, wind, and 

solar at time t, respectively. 

3. Marine Predator Algorithm  

In this paper, three optimization techniques are 

applied to solve the ED problem in MMG system. The 

marine predator optimizer (MPO) was created by 

nature, with physiological connections based on 

Ramezani, Bahmanyar, and Razmjooy [28]. It 

conforms to principles for the best searching methods 

and meets rate procedures by using a certain search 

space.  

( )0 min max minX X rand X X= +  −             (11) 

where, Xmin and Xmax are the lower and higher bounds 

of control variables, respectively. rand is a random 

number from 0 to 1 and   is the dot product. 

The fittest theory states that top predators (Xi,j refers to 

the jth dimension of ith prey) are better hunters. By 

updating the original Prey matrix and duplicating the 

top member vector n times, they create an Elite matrix 

depending on the position of the prey. This involves n 

population numbers and d dimensions. Depending on 

varying speed ratios, the MPO search process is 

separated into three parts. 

Phase 1: Prey accepts Brownian motion, predator 

focuses on exploratory behavior. The mathematical 

model described at Iter < 1

3
Max_Iter as follows: 

( Pr ), 1,2, ......,i B i B istepsize R Elite R ey i n=  −  = (12) 

Pr Pr .i i iey ey P R stepsize= +          (1) 

where,
 BR is a Brownian random number vector 

within the range [0,1], P is a constant, R  is a vector 

of random numbers in [0,1], Iter, and Max_Iter refer 

to the current iteration, and the maximum number of 

iterations, respectively. 

Phase 2: This phase investigates Lévy prey and 

Brownian predator movements, examining exploration 

and exploitation processes. The mathematical model 

cleared at 1

3

Max_Iter ≤ Iter < 2

3
Max_Iter as:  

(i) The first part of the population shows the behavior 

as: 

( Pr ), 1,2, ....., 2i L i L istepsize R Elite R ey i n=  −  =     (2) 

Pr Pr .i i iey ey P R stepsize= +          (3) 

where, 
LR  is a Lévy distribution-based vector of 

random integers that perform Lévy movement. 

(ii) The other part of the population shows in the 

exploratory behaviors: 

   
( Pr )i B B i istepsize R R Elite ey=   −         (4) 

Pr i i iey Elite P CF stepsize= +                (5) 

where, CF  is an adaptive parameter that sets the size 

of the predator step, which can be expressed as: 

2
_

1
_

Iter

Max IterIter
CF

Max Iter

 
 
  

= − 
 

        (6) 

Phase 3: Predators hunt prey faster than goals as 

clarified at Iter ≥ 2

3
Max_Iter as follows: 

( Pr ), 1,2, ...,i L L i istepsize R R Elite ey i n=   − =  
(7) 

Pr .i i iey Elite P CF stepsize= +          (20) 

Lévy method uses predator movement, combining 

Elite and step size, to predict predator behavior. 

Environmental factors like eddy formation and fish 
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aggregating devices (FADs) impact predator behavior, 

requiring longer steps. 

( )

min max min

1 2

Pr

Pr

Pr 1 Pr Prr r

ey CF X R X X U
if r FADs

ey
if r FADs

ey FADs r r ey ey

→ → → → →

→

→ → →

   
+ +  −        

= 
   + − + −       

(21) 

FADs are binary vectors with a 0.2 probability of 

modifying the optimization process, with dimensions, 

and prey matrix random indexes (r1 and r2). The flow 

chart of the proposed MPO to solve the ED problem in 

MG is shown in Figure 1. In this paper, the MPO is 

used to solve the ED problem in MGs by finding the 

best scheduling of RERs in both isolated MG and 

MMG modes of operation considering the 

minimizations of the total operation cost as OF. The 

steps of MPO to find the optimal solutions are 

presented as follows: 

Step 1: Insert MG configuration with predicted 

power output, RER characteristics, network 

characteristics, cost, bids, load curve, and the OF, and 

set MPO parameters and constants. 

Step 2: The MPO starts with a random population 

matrix (X) as: 

1 2 3[ , , ,...., ]
p

T

NX X X X X=                       (22) 

Each element (Xi) can be formed as:

       
1 2 1 2 1 2 1 2

[ , , ..., , , , ..., , , , ..., , , , ..., ]
N N N Nd w s b

i i i i j j j k k k l l lX P P P P P P P P P P P P=
   

(8) 

where, Pi, Pj, Pk, and Pl are the outage powers from 

diesel, wind, solar, and battery in MG, respectively. 

Every element points to a solution within 24 hours as:  
min max min( )i i i iP P rand P P= +  −           (9) 

Step 3: The initial global best solution of the OF (
initial

best
F ) and corresponding control variables (

initial

best
x ) 

can be determined among the accepted solutions. 

Step 4: Create Elite and Prey matrix and accomplish 

memory saving. 

Step 5: Determine the top predator from Elite and 

Prey for updating the position and velocity of the prey 

for successive iterations. 

Step 6: Apply Lévy flight that can construct the 

algorithm limited out of the local ideal 

Step 7: Apply three phases 

Step 8: If the termination requirements are not met, 

repeat from step 3.  

 
Figure 1 Flow chart of MPO of single MG 

 

4. Applications 

4.1 Description of MGs 

The proposed algorithm is applied to isolated MG 

and MMG systems to determine the optimal 

scheduling of RERs for reducing the total operating 

costs. Specific information concerning isolated MG, 

output power from solar and WT for the isolated MG 

based on 24-hour data are obtained from [29]. Figure 

2 depicts the estimated load power for a single isolated 

MG via 24-hour data. Table 1 displays the cost 

coefficients of conventional generators. The BES 

system produces 344 kWh [30], and operates for 12 

hours during charging and 12 hours during 

discharging. 

The MMG system used in this paper consists of two 

MGs, including RERs such as solar units, wind units, 

and BES. The load data for the two MGs are founded 

in [25,26]. 

Table 1 coefficients of fuel cost functions for all 

generators for isolated MG 

Units CHP (G1) 
Diesel generator 

(G2) 

Natural gas 

generator (G3) 

  a (S/MW2h) 0.00024 0.000435 0.000315 
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b (S/MWh) 0.21 0.3 0.306 

c (S/h) 15.3 14.88 9 
  

4.2 Results and comments 

• Results of single MG 

Table 2 shows the best scheduling of various 

generation units for minimizing total operating costs 

for single MG. The overall operating cost achieved 

using the suggested MPO is less than that acquired 

using the PSO method. Therefore, this comparison 

reflects the great capability of the proposed MPO to 

solve the ED in MG. Figure 3 shows the convergence 

curves of the proposed MPO, JS, PSO, and DE for 

single MG. The proposed MPO can reach the optimal 

value of the OF with a lower number of iterations. 
 

 
Figure.2 Expected load power for every hour per day 

 

Table 2 Optimal scheduling of generation units for minimizing total cost for single MG 

hr 

MPO JS 

P1 

(MW) 

P2 

(MW) 
P3  

(MW) 

Solar 

(MW) 

Wind 

(MW) 

BES 

(MW) 

P1 

(MW) 

P2 

(MW) 

P3 

(MW) 

Solar 

(MW) 

Wind 

(MW) 

BES 

(MW) 

1 1.3202 0.2017 0.6011 0 0 -0.0229 0.1081 0.9655 1.0494 0 0 -0.0229 

2 1.417 0 0.706 0 0 -0.0229 0.1045 0.7574 1.261 0 0 -0.0229 

3 1.182 0.9597 0.0812 0 0 -0.0229 0.9026 0.5168 0.8036 0 0 -0.0229 

4 1.2479 0 1 0 0.025 -0.0229 0.755 0.0006 1.4923 0 0.025 -0.0229 

5 1.3271 0.8786 0.0923 0 0.025 -0.0229 1.4365 0.8309 0.0305 0 0.025 -0.0229 

6 1.101 0.38 0.746 0 0.1 0.0229 1.3082 0.7995 0.1195 0 0.1 0.0229 

7 1.0521 1 0 0.075 0.2 0.0229 0.8878 0.7245 0.4398 0.075 0.2 0.0229 

8 0.918 0 0.9991 0.16 0.3 0.0229 0.5293 0.1444 1.2433 0.16 0.3 0.0229 

9 1.2714 0.1464 0.2492 0.26 0.45 0.0229 0.2939 0.5221 0.851 0.26 0.45 0.0229 

10 1.2748 0 0.2223 0.35 0.58 0.0229 0.011 0.0133 1.4728 0.35 0.58 0.0229 

11 0.837 0.2029 0.3672 0.39 0.68 0.0229 0.7975 0.5027 0.1069 0.39 0.68 0.0229 

12 1.1816 0 0.1705 0.425 0.7 0.0229 0.3584 0.5967 0.397 0.425 0.7 0.0229 

13 1.0396 0.1198 0.1577 0.41 0.75 0.0229 0.0329 0.1165 1.1677 0.41 0.75 0.0229 

14 1.0582 0.0705 0.0483 0.4 0.8 0.0229 0.0598 0.0825 1.0348 0.4 0.8 0.0229 

15 0.3364 0.5033 0.4773 0.36 0.7 0.0229 0.5901 0.305 0.422 0.36 0.7 0.0229 

16 0.9112 0.3812 0.1497 0.295 0.54 0.0229 0.1939 0.5077 0.7405 0.295 0.54 0.0229 

17 0.8549 1 0.0222 0.2 0.2 0.0229 0.1005 0.2768 1.4998 0.2 0.2 0.0229 

18 0.6359 0.4979 0.9841 0.075 0.08 -0.0229 1.3116 0.8054 0.001 0.075 0.08 -0.0229 

19 1.4051 0.7928 0 0.025 0 -0.0229 1.1723 1.0217 0.0039 0.025 0 -0.0229 

20 1.1729 0 1 0 0 -0.0229 0.8544 1.3031 0.0154 0 0 -0.0229 

21 1.2436 0.8949 0.0244 0 0 -0.0229 1.4175 0.6843 0.0611 0 0 -0.0229 

22 1.4254 0.2429 0.4546 0 0 -0.0229 0.3999 1.4885 0.2346 0 0 -0.0229 

23 1.1229 1 0 0 0 -0.0229 1.2856 0.0457 0.7916 0 0 -0.0229 

24 1.0248 0.1369 0.8612 0 0 -0.0229 0.3502 0.1774 1.4954 0 0 -0.0229 

Total cost ($) 1022.80915 1022.83818 
   

 

• Results of MMG system 

Tables 3 and 4 show the best scheduling of various 

generation units and the total operation costs of the 

MMG using MPO, and JS, respectively. It is noted 

that, the total operation cost obtained using the 

proposed MPO is lower than that obtained using JS. In 

addition, the total cost obtained when solving the ED 

in MMG is lower than that obtained when considered 

individual MGs. For example, the total operating cost 

in MMG by using MPO is 2046.381 $, but by using 

isolated MGs, it is 1022.8091 $, meaning that the total 

cost of two MGs is equal to 2045.618 $, that means it 

saves about 1022.8091 $ (lower than total cost of the 

two isolated MGs). This comparison reflects the 

2
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priority MPO than the other algorithms for solving the 

ED in MMGs. 

 
Figure 3 Convergence curves of the proposed MPO 

and other methods for single MG 
 

Figure 4 shows the convergence curves of different 

techniques for minimizing total operation costs. The 

MPO reaches to the minimum cost than other 

techniques with a minimum number of iterations.  

 
 

Figure 4 Convergence curves of the proposed 

MPO and other methods for MMG 
 

Figure 5 shows a summary between the total 

operation costs of isolated MG and MMG using MPO 

and other techniques. 

Table 3 Optimal scheduling of generation units for minimizing total cost for MMG using MPO 

hr 

MG1 MG2 

P1  

(MW) 

P2  

(MW) 

P3 

(MW) 

Solar 

(MW) 

Wind 

(MW) 

BES 

(MW) 

P1  

(MW) 

P2  

(MW) 

P3  

(MW) 

Solar 

(MW) 

Wind 

(MW) 

BES 

(MW) 

1 0.8405 0.701 0.7963 0 0 -0.0229 0.4673 0.943 0.4977 0 0 -0.0229 

2 1.0455 0.7851 0.8597 0 0 -0.0229 0.41 0.693 0.4526 0 0 -0.0229 

3 1.3969 0.7658 0.912 0 0 -0.0229 0.3391 0.4723 0.5598 0 0 -0.0229 

4 1.1108 0.7564 0.9778 0 0.025 -0.0229 0.3527 0.6117 0.6865 0 0.025 -0.0229 

5 1.4569 0.7951 0.4039 0 0.025 -0.0229 0.8893 0.4391 0.6117 0 0.025 -0.0229 

6 0.7547 0.6344 0.903 0 0.1 0.0229 0.783 0.8421 0.537 0 0.1 0.0229 

7 0.952 0.6802 0.7729 0.075 0.2 0.0229 0.4289 0.6407 0.6295 0.075 0.2 0.0229 

8 0.6166 0.7818 0.4215 0.16 0.3 0.0229 0.8142 0.7721 0.4279 0.16 0.3 0.0229 

9 0.6792 0.7911 0.4 0.26 0.45 0.0229 0.7005 0.4697 0.2936 0.26 0.45 0.0229 

10 0.7744 0.613 0.4 0.35 0.58 0.0229 0.4312 0.4771 0.2984 0.35 0.58 0.0229 

11 0.551 0.6296 0.4 0.39 0.68 0.0229 0.5334 0.4093 0.2908 0.39 0.68 0.0229 

12 0.3045 0.5787 0.4 0.425 0.7 0.0229 0.6271 0.4605 0.3334 0.425 0.7 0.0229 

13 0.3163 0.6951 0.4 0.41 0.75 0.0229 0.4742 0.4178 0.3308 0.41 0.75 0.0229 

14 0.3549 0.5941 0.4 0.4 0.8 0.0229 0.3249 0.3503 0.3299 0.4 0.8 0.0229 

15 0.0167 0.5926 0.4 0.36 0.7 0.0229 0.8805 0.4312 0.3131 0.36 0.7 0.0229 

16 0.5699 0.6407 0.4 0.295 0.54 0.0229 0.4665 0.4659 0.3412 0.295 0.54 0.0229 

17 1.0117 0.7003 0.552 0.2 0.2 0.0229 0.6087 0.4394 0.4421 0.2 0.2 0.0229 

18 1.2883 0.7687 0.5686 0.075 0.08 -0.0229 0.8166 0.3965 0.3972 0.075 0.08 -0.0229 

19 0.9685 0.694 0.4408 0.025 0 -0.0229 0.7811 0.9241 0.5875 0.025 0 -0.0229 

20 0.7865 0.6814 0.9116 0 0 -0.0229 0.7653 0.7522 0.4488 0 0 -0.0229 

21 1.0841 0.6529 0.7194 0 0 -0.0229 0.4927 0.8676 0.5091 0 0 -0.0229 

22 0.961 0.7374 0.491 0 0 -0.0229 0.9793 0.5343 0.5429 0 0 -0.0229 

23 1.1695 0.6499 0.7873 0 0 -0.0229 0.7598 0.46 0.4193 0 0 -0.0229 

24 0.9699 0.7912 0.906 0 0 -0.0229 0.303 0.662 0.4138 0 0 -0.0229 

Total cost ($) 2046.381 

 

• Results of statistical analysis 

Table 5 shows statistical summary of different 

methods after 30 trials, showing best, worst, mean, 

SD, and standard error. It can be observed that a better 

performance is obtained using the proposed MPO 

because of the convergence to the best solution in most 

trials. This comparison reflects the capability of the 

proposed MPO to reach either optimum value or very 

near to it in every trial. 
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Table 4 Optimal scheduling of generation units for minimizing total cost for MMG using JS 

hr 

MG1 MG2 

P1  P2  P3 Solar 

(MW) 

Wind 

(MW) 

BES 

(MW) 

P1  P2  P3  Solar 

(MW) 

Wind 

(MW) 

BES 

(MW) (MW) (MW) (MW) (MW) (MW) (MW) 

1 0.6304 0.9946 0.6 0 0 -0.0229 0.7 0.6209 0.7 0 0 -0.0229 

2 0.8337 0.6127 0.8 0 0 -0.0229 0.6994 0.7 0.6 0 0 -0.0229 

3 1.0517 0.7852 0.709 0 0 -0.0229 0.6 0.6 0.7 0 0 -0.0229 

4 1.3604 0.6 0.731 0 0.025 -0.0229 0.6295 0.6 0.6 0 0.025 -0.0229 

5 1.3464 0.8745 0.6 0 0.025 -0.0229 0.6 0.6 0.6 0 0.025 -0.0229 

6 1.3277 0.6646 0.639 0 0.1 0.0229 0.6228 0.6 0.7 0 0.1 0.0229 

7 0.9028 0.6941 0.8 0.075 0.2 0.0229 0.6457 0.6615 0.6 0.075 0.2 0.0229 

8 1.0103 0.6083 0.6 0.16 0.3 0.0229 0.6 0.6156 0.7 0.16 0.3 0.0229 

9 0.9812 0.6 0.6 0.26 0.45 0.0229 0.603 0.7 0.3 0.26 0.45 0.0229 

10 1.484 0.3674 0.2818 0.35 0.58 0.0229 0.5303 0.5016 0.4091 0.35 0.58 0.0229 

11 1.077 0.3 0.333 0.39 0.68 0.0229 0.6462 0.4608 0.6771 0.39 0.68 0.0229 

12 1.2092 0 0.8 0.425 0.7 0.0229 0.6986 0.6964 0 0.425 0.7 0.0229 

13 1.3249 0.1163 0 0.41 0.75 0.0229 0.6429 0.6 0.7 0.41 0.75 0.0229 

14 1.3541 0.3 0.3 0.4 0.8 0.0229 0.6 0.3 0.3 0.4 0.8 0.0229 

15 1.0593 0.1338 0.3 0.36 0.7 0.0229 0.6019 0.6392 0.6 0.36 0.7 0.0229 

16 1.0123 0.2475 0.1805 0.295 0.54 0.0229 0.6843 0.6013 0.6983 0.295 0.54 0.0229 

17 1.4183 0.0328 0.527 0.2 0.2 0.0229 0.6 0.6761 0.7 0.2 0.2 0.0229 

18 1.1892 0.6059 0.5 0.075 0.08 -0.0229 0.7 0.6941 0.6267 0.075 0.08 -0.0229 

19 1.1993 0.8389 0.5006 0.025 0 -0.0229 0.6 0.6566 0.6003 0.025 0 -0.0229 

20 1.1562 0.7157 0.5 0 0 -0.0229 0.6 0.7 0.674 0 0 -0.0229 

21 1.4449 0.5 0.5 0 0 -0.0229 0.6213 0.6597 0.6 0 0 -0.0229 

22 1.163 0.5015 0.689 0 0 -0.0229 0.6113 0.6811 0.6 0 0 -0.0229 

23 1.1732 0.6349 0.5665 0 0 -0.0229 0.6 0.6 0.6713 0 0 -0.0229 

24 0.9026 0.691 0.8 0 0 -0.0229 0.6406 0.7 0.3117 0 0 -0.0229 

Total cost ($) 2048.261 

 

Table 5 Statistical summary of the proposed MPO and other methods after 30 random trials  

Case# Algorithm Best solution Worst solution Average SD Standard error 

MG 

PSO 1022.9613 1023.2481 1023.1297 0.00402192 0.0007343 

DE 1022.855 1023.0827 1022.983 0.00371039 0.00067742 

JS 1022.838 1023.25332 1022.98681 0.0140412 0.00256356 

MPO 1022.8091 1023.14 1022.914 0.00598567 0.0011 

MMG 

PSO 2048.524 2049.137 2048.651 0.035755 0.00652802 

DE 2048.231 2048.37 2048.309 0.001748 0.0003191 

JS 2048.261 2048.45 2048.372 0.00231168 0.000422 

MPO 2046.381 2046.644 2046.55 0.004094 0.00074504 
       

 

 

Figure 5 Comparison of total cost using different 

techniques for MG and MMG 

5. Conclusion   

In this paper, the MPO has been successfully 

developed and utilized to determine the best schedule 

for BES in both single-MG and MMG modes, as well 

as for renewable and nonrenewable energy resources.  

We present the MPO as a revolutionary approach to 

solving the ED problem in MMG. This approach 
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draws its inspiration from the biological interactions 

between predators and prey in marine environments, 

where predators frequently employ the well-known 

foraging tactic known as Brownian and Lévy random 

movement. Additionally, the planned MPO's 

evaluation has been conducted by contrasting the 

outcomes of statistical analysis with other techniques. 
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