Menofia University
Faculty of Engineering
Shebin El-kom
Academic Year: 2019-2020
Department: Basic Eng. Sci.

Subject: Engineering Mathematics

Code: BES 712

Time Allowed: 3 hours

Date: 13/8/2020

Allowed Tables and Charts: None

Answer all the following questions: [100 Marks]

Q.1	A) For the following statements, state true or false and why?	[20]
	1. A differential equation involving derivatives with respect to a	
	multiple independent variable is called an ordinary differential	
l	equation (ODE).	
į	2. A differential equation involving partial derivatives with respect to more than one independent variable is called partial	
	differential equations (PDE).	
	3. The lowest order derivative involved in a partial differential equation is called the order of the partial differential equation.	
	4. The degree of a partial differential equation is the degree of the	
	highest derivative which occurs in it.	
	5. The partial differential equation (PDE) is called quasi linear	
	PDE if the equation is nonlinear in the highest order derivative	
	but non-linear in other term.	
	B) Explain each of the following:	
	1. Boundary conditions (give an example)	
	2. Initial conditions (give an example)	
	3. Quasi-linear Partial differential equation (give an example)	
	4. Initial value problem (give an example)	
	5. Boundary value problem (give an example)	
Q.2	(A) For the total differential equation in three variables,	[30]
	Solve the following equation $yz dx + (xz - yz^3) dy - 2xy dz$	z = 0
	(B) For the total differential equation in three variables,	
	Solve the following equation $yz dx - z^2 dy - xy dz = 0$,	
	using the method of substitution and also by the integrating factor	

(A) Solve the wave equation in an infinite domain (using Fourier

Transform) [30]

$$\frac{\partial^2 u}{\partial t^2} = C^2 \frac{\partial^2 u}{\partial x^2}, \qquad -\infty < x < \infty, \qquad t > 0$$

With the boundary conditions:

$$u(x,t) \to 0$$
 as $x \to \pm \infty$

And initial conditions:

$$\frac{u(x,0) = f(x),}{\frac{\partial u(x,0)}{\partial t}} = 0, \quad -\infty < x < \infty$$
If y_1 and y_2 are two solutions of the equation

 $ty'' + 2y' + te^t y = 0$ and $w(y_1, y_2)(1) = 2$ Find

$$w(y_1, y_2)(5)$$

(c) Find the particular solution of the following partial differential equation

$$\frac{\partial^2 u}{\partial x^2} - \frac{\partial u}{\partial y} \frac{\partial u}{\partial x} - 2 \frac{\partial^2 u}{\partial y^2} = e^x (y - 1)$$

(A) Find the complete general solution and the singular solution of the following non-linear partial differential equation

$$\frac{\partial u}{\partial x} \frac{\partial u}{\partial y} = 2xy$$
(B) For the following partial differential equation

[20]

$$x^2 \frac{\partial z}{\partial x} + y^2 \frac{\partial z}{\partial y} + z^2 = 0$$

Find: (i) The general solution of the PDE.

- (ii) The particular solution which passes through the curve xy = x + y, z = 1
- (iii) The equation of the required integral surface.

This exam measures the following ILOs												
Question Number	Q1-a	Q2-a		Q2-b	Q3-b		Q1-b	Q3-a				
Skills		b-i		b-i, b-iii]				
SKIIIS	Knowledge & understanding skills		Intellectual Skills			Professional Skills						

With our best wishes

Dr. Osama N. salih