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FPGA VERSUS ASIC IMPLEMENTATION OF
RADIX-4 SCALABLE MONTGOMERY MODULAR
MULTIPLIER

BJQUJ‘GQUJZEJ}\LJXLAGL:MM Lﬁ_).o_g:-ll}.ok_l_)l_.aégaxsz.l‘)&
saasall ALaliall il gall aa Lilis Aaa juedl LS gl 44 ghina aladiuly

éubﬁ
ATEF A IBRAHIM' | HAMED A. ELSIMARY', AMEN M. NASSAR

! Electronics Research Institute, Cairo, Egypi,

? Cairo Universily, Cairo, Egypt

gl padldl

Giadll Aa 8 e Jil By s il () Baadall Boane ALASIAN i ol 0565 plasialy il iy A ) (Bades ()
Lye o855 48 g sl O el B0 s gl e ) e aaind ¥ 2 pull Y 5585 5 O Samy Tpa il A gy
DA A e o) GBaat oA ¢ Al de st QIS LRI Dy all G paad B Jal Bl fas ARe 4oy
Gun e — Liia gh Apadadd D)l 030 (e Coaglt Ll e pualt Tt ) A i (Bia Apa ol TS 5 ) Ay
Aae padt bt 4 phoaa phadinly 3aclll ely; Ball Giliia SR (g e ga5i e oo s (Baiind - Lol y dalisall
Alise cldy ) O abaal iy Gualail saan ol Al il yalt ae Ll

ABSTRACT

Traditional ASIC implementations have the well known draw-back of rcduced flexibility compared to
software implementations. Since medern sccurity protocols are increasingly defined to be algorithm
independent, a high degree of flexibility with respect 1o the cryptographic algorithmg is desirable. A
promising solution which combines high fiexibility with the speed and physical sccurity of traditional
hardware is the implementation of cryptographic algorithms on reconfipurable devices such as FPGA. In
this paper we compare — in terms of arca and speed- FPGA Implementation of radix-4 scalable Montgomery
modular multiplicr using encoding technique [15] with ASIC implementation for differcnt word sizes of
aperands. The experimental data were gencrated using Mentor Graphics CAD tools.
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1. INTRODUCTION applications, such as the decipherment operation of
the RSA algorithm [1], the Diffie-Hellman key

Modular multiplication is a widely used exchange algorithm[2], as well as some applica_tic_ms
operation in cryptography. Several well know currently under development, such as the Digital
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Signature  Standard [3] and elliptic curve
cryptography {4}, all use modular multiplication and
modular exponentiation. The second operation is
ofien implemented by a series of multiplications
and additions [6,7,8].

Given the increasing demands on secure
communications, cryptographic algorithms will be
embedded in almost every application involving
exchange of information, Some of these
applications, such as smart cards [9] and hand-helds,
require hardware restricted in area and power
resources [10].

An efficient algorithm to implement modular
multiplication is the Montgomery Multiplication
algorithm  [11], it has many advantages over
ordinary modular multiplication algorithms. The
main advantage is that the division step in taking the
modulus is replaced by shift operations which are
easy to implement in hardware [10].

An aspect of cryptographic applications is that
very large numbers are used. The precision varies
from 128 and 256 bits for elliptic curve
cryptography to 1024 and 2048 bits for applications
based on exponentiation [12]. Most of the hardware
designs for modular multiplication are fixed-
precision sofutions. That is, the operands can be
only of fixed bit-size, Designs that can take
operands with an arbitrary precision have been
researched in the ASIC [13] and the FPGA [8]
realms.”

A scalable (variable-precision) Montgomery
multiplier design methodology was introduced in
[13] in order to obtain hardware implementations.
This design methodology allows to use a fixed-area
modular multiplication circuit for performing
multiplication of unlimited precision operands. The
design tradeoffs for best performance in a limited
chip area were also analyzed in [13]. Extension of
this design methodology to higher radices was
introduced in [14].

Traditional ASIC implementations, however,
have the well known draw-back of reduced
flexibility compared to software implementations.
Since modern security protocols are increasingly
defined to be algonthm independent, a high degree
of flexibifity with respect to the cryptographic
algorithms is desirable, A promising solution which
combines high flexibility with the speed and
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physical security of traditional hardware is the
implementation of cryptographic algorithms on
reconfigurable devices such as FPGA.

In this paper we compare — in terms of area and
speed - FPGA implementation of radix-4 scalable
Montgomery modular multiplier using encoding
technique [15] with ASIC implementation for
different word sizes of operands. The experimental
data were generated using Mentor Graphics CAD
tools.

This contribution is structured as follows. In
Section 2 we present the radix-4 Montgomery
Modular Multilpication algorithm (R4MM). Section
3 presents the overall organization of the modular
muitiplier that implements the R4MM., Section 4
shows the experemental results, generated using
Mentor Graphics CAD tools. Section 5 concludes
the work.

2. R4AMM ALGORITHM

The notation used in the presented multiple-word
Radix-4 Montgomery Multiplication algorithm
(R4MM) is shown below (Fig.1).

Fig. 2 shows the R4MM algorithm, which is an
extension of the Multiple-Word High-Radix (R
2*) Montgomery  Multiplication  algorithm
(MWR 2" MM) presented and proved to be corect
in[14].

There are two types of recoding applied in the
R4MM. The first one (Recodingl) is Booth
recoding [16] applied to the multiplier X. This
recoding scheme translates conventional radix-4
digits in the set {0, 1, 2, 3} into the digit set {-2, -1,
0, 1, 2} . The recoded digit Z, is obtained from the

radix-4 multiplier digit X, =(x,,,,x,,) as:

Z,=Recodingl(X,x,, )= -2x,,, +x,, +X,
‘ N

where j= 0,1,2,....,?—1 )

In order to make the two least-significant bits of
the partial product § all zeros, a multiple of the

modulus M, namely gM M, is added to the partial
product. This step is required to make sure that there
are no significant bits lost in the right shift operation
performed in step 10. To compute the digit g, we
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need to examine the two least-significant bits of the
partial product § generated in step 4 of the R4MM
algorithm .

* X — Multiplier , ¥- Multiplicand ,
M - Modulus, § - Partial product

*N - operands precision
* X, - asingle radix-4 digit of X at position
A

*gM , - quotient digit that determines a
multiple of the modulus M to be
added to the partial product §;

* w - number of bits in a word of either ¥, M

or S,

| ..
* = [&--, - number of words in either ¥,
W

Mor S,

* NS - number of stages;,

*C,, C, - carry bits;

(yen LYY Y9y - operand ¥
represented as multiple words;

* §U , - bits k- 110 0of the i* word of S

Fig. 1. Notation

It is shown in [14] that gM ,, as computed in step
5, satisfies the relation gM *M =-S(mod4),
which can be rewriften as:
S.o+gM,*M,,=0(mod4) and represents the

fact that the last 2 bits of S are zeros before the right
shift is done in step 10.

It is easy to show from Booth encoding
properties that the multiplier X is represented by
digits of Z, [17]. However, it is stili necessary to
show that Recoding2 (step 5a of R4MM) generates
an equivalent result. In order to do that we need to
show that gM | = g, mod 4. It is well known that

conventional quotient digits gAf, are in the set {0,
1, 2, 3}. Applying a recoding function (Recoding2)
we convert gM, to another digit set {-1, 0, 1, 2}.

The recoding scheme consists in replacing gM, =3

by the recoded value M, = -1. It makes the

E. 29

generation of multiples of M less complex. Based on
the fact that —1=3mod4 it is possible to conclude
that gM, = gM mod4 — gM +M =gM,*M mod4.
And therefore the application of Recoding?
generates a result that is congruent to the correct
result, modulo M. In fact steps 5 and 5a of the
R4MM algorithm can be executed in a single step.
Two steps were shown for clarity only.

Step
1. §:=0
x, =0
2: FORj:=0TON-1STEP2
3: ‘Z‘r = Recodiﬂgl(x;ou-l)
& (C.,59)=59+(Z, s
S g, = S0 (4-MY" ymod 4

Sa:  gM, = Recoding2(gM )

(C,,5):= S +(gM, M)

FORi=1TQe-1

(C..§7)=C,+S+(Z,+1)"

9: (C“Sm) = C,,Sm +(qM, ,M)m

10 S“"=(SY, 840,
END FOR;

11: C,=C, or C,

12: 8% = signext(C,, S50,

ENDFOR;

=

Fig. 2. Multiple-word R4MM algorithm

3. OVERALL ORGANIZATION

The architecture of the modular multiplier that
_implements the R4MM consists of 3 main blocks;
Datapath (or Kermel), [0 & Memory, and the
Control block. The computation shown in the
R4MM algorithm takes place in the kerme/. The
complete design is presented and discussed in
details in[18].

The kernel is organized as a pipeline of
Processing Elements (PE), separated by registers.
Each PE implements one iteration of the R4MM
algorithm (steps 3 1o 12),
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3.1 Radix-4 Processing Element

The radix-4 PE is organized as shown in Fig. 3.
The main functional blocks in the PE are: booth
recodmg, muliiple generation (Mult Gen), multi-
precision Carry-save adders (MPCSA), M, table,

and registers (shaded boxes}. The PE operates on w-
bit words and for this reason the Muft Gen and
MPCSA modules are capable of storing and
transferring carry bits from one word to the next.
Shifting and word alignment is done by proper
combination of signals and registers at the output of
the last MPCSA. The design uses a re-timing
technique explained in [14]. More details about
these modules and their operation can be found in
[18).

The Processing Element {PE) is divided in two
sections. The first section (before the register)
computes only the two least-significant (LS) bits of
each word of § +Z Y . One can observe that gM,

depends on two LS bits of the data coming from the
{0)

preceding PE in the pipeline: (§) and ¥*, and
the recoded digit Z, . The word size for § needs to

be at least 4 bits in order to have the two LS bits of
S generated as early as possible for the next PE.

A stage consists of a PE and a register. At each
clock cycle, one word of ¥ , M, 85, and SC is
applied as inputs to a stage.

The multiplier digits X, are transferred to PEs at

specific times. The newly computed words of S§
and SC, together with words of ¥ and M, are
propagated by each stage to the next stage. This
way, small PEs work concurrently to perform
several iterations of the RAMM algorithm.

4. EXPEREMENTAL RESULTS

The experimental data were penerated using -

Mentor Graphics CAD tools. The radix-4 design
presented in this paper was described in VHDL and
simulated in ModelSim for functional correctness.

4.1 ASIC Implementation

Radix-4 design was synthesized using Leonardo
synthesis tool for AM{05- fast auto (0.5 um CMOS
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technology with hierarchy preserved) provided in
the ASIC Design Kit {ADK) from the same
company. It has to be noted that the ADK has been
developed for educational purposes and therefore
cannot be fully compared to technologies used for
commercial ASICs, however, it provides a
consistent environment for comparison between the
designs, and a reasonable approximation of the
system performance when using commercial ASIC
technology.

(55,50 =

Lo bter-staga register

LRy '-':" i
Fig. 3. PE Organization

4.1.1 Area Estimation for Radix-4 Kemel

The area of the kernel depends on the two design
parameters: number of stages in the pipeline (NS),
and the word size {w) of the operands (¥ , M) and
the result (§). the total area of the kemel is given by
(as mentioned in {18]):

Akernel,, = 62.86* NS *w+146« NS

1
-4.875%w-13 W

Table 1 is constructed using Eq. 1. The area
estimates are  given in terms of 2-input NOR gate.

4.1.2 Time Estimation for Radix-4 Kernel

The total computational time for the kernel is a
product of the number of clock cycles it takes and
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the clock period. Table 2 shows the critical path
delay as a function of the number of stages in the
pipeline (MS), as well as the word size (w) of the
operands.

Table 1
AREA IN NUMBER OF NOR GATES FOR RADIX-4
KERNEL
N3 Word Size (w)
% 16 12 64 128
| 398 1060 1989 3844 7383
2 1246 212 4146 8013 15747
3 1893 3364 6304 12182 23939
4 2844 4516 B461 16351 32131
5 3193 5667 10617 20520 40323
6 3843 6819 12776 24689 48516
7 4491 7971 14934 28338 36708
] 3139 9123 17091 33027 64900
9 5788 10274 19248 37196 73092
10 6437 11426 21406 41363 31284
n 7086 12578 23563 45334
12 7733 13730 13720 49704
13 384 14881 27879 5387}
14 9033 16033 006 58042
13 9681 17185 32094 62211
16 10331 Jer 34351 66380
20 12926 12944 42981 83056
23 15170 28701 53769
30 19415 34461 64537
35 22659 40220 75344

A word of ¥, M, and § propagates through the
pipeline for (24 NS +1) clock cycles. The speed of
scanning the bits of X for radix-4 is two bits per
stage. Based on these observations, Eq. 2 represents
the total number of clock cycles needed for R4MM
{as mentioned in [18]).
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Table 2
CRITICAL PATH DELLAY FOR RADIX-4 KERNEL
(ASIC)
NS T Word Size (w) 7
8 16 iz 64 128
1 5.52 .8 6.25 73 6,79
2 362 6.13 6.18 .34 6.84
3 5.62 6.13 628 134 6.84
4 5.62 6.13 628 1.34 6.84
5 5.62 6.13 6.38 71.34 6.84
6 5.62 634 628 134 6.84
7 5.62 6.4 6.23 7.3 6.84
8 5.62 634 6.28 7.34 6.84
% 5.62 6.34 6.28 734 684
10 5.62 6.34 6.28 T34 6.84
11 562 6.34 6.28
12 5.62 6.34 628
13 621 634 628
14 621 6.34 6.28
15 6.2 6.34 6.28
6 6.21 6.34 6.28
20 6.21 6.34 6.28
25 6.2 634 628
30 621 6.34
35 6.21 634
[zvNS.]‘(anSH)*'[%] 1, if[%r-.ls e NS

)

-([£]+})+2'NS ,rf{ﬁ]>2tNS
W W

 The total computational time is obtained by
multiplying Tcfks by the corresponding critical path
delay (clock period) shown in Table 2, which was
obtained from synthesis tools.
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4.2.2 Time Results

4.2 FPGA Implementation

Radix-4 design was synthesized using Leonardo
synthesis tool for Xilinx Virtex -1I technology.

4.2.1 Area Results

The area in FPGA is given in terms of
Configurable Logic Blocks (CLBs) instead of gates
as in ASIC implementation. Table 3 shows the area
as a function of the number of stages in the pipeline
(NS), as well as the word size (w) of the operands,

Table 4 shows the critical path delay as a function «

the number of stages in the pipeline (N5), as well as tt

word size (w) of the operands.

Table 4
CRITICAL PATH DELAY FOR RADIX-4 KERNEL
' (FPGA)
NS Word Size (w)
g 16 32 64 128
1 7.41 7.6 835 935 8.75
2 1.52 7.62 838 9.36 8.80
3 7.62 8.13 838 9.36 .80
4 7.65 8.13 .48 9.36 8.8
s 762 8.14 8.43 938 8.83
6 763 R34 848 2.18 2.84
7 7.63 835 849 9.38 .85
g 7.64 833 £.49 9.1y $.83
9 7.64 8.36 8.51 2.39 8.87
10 7.10 .44 8.52 9.39 .37
1 7.20 B.44 8.52
12 .21 8.54 8.53
13 8.20 8.54 8.53
14 822 8.36 835
15 8.22 8.56 £.55
16 2.3 857 8.56
20 8.32 8.6 8.56
23 832 8.61 8.56
30 £33 262
s 8.34 8.63

5. CONCLUSION

Table 3
AREA IN NUMBER OF CLBS FOR RADIX-4
KERNEL
NS Word Size (w)
g 6 32 64 128

1 5 11 18 41 M
2 10 19 39 8l 134
3 15 19 13 119 214
4 1% 40 77 149 307
h) 3 49 26 184

& 28 38 109 220

A T 69 128 %4

3 37 78 147 95

9 42 87 167 20

10 46 .9 185

8] 50 108 201

12 54 117 22

12 58 123 142

14 61 136 261

15 63 143 280

16 53 154 300

20 64 121

25 84 3]

0 102 273

Eh] 122 305

R4MM was implemented on ASIC technology
(AMI0S- fast aulo) as well as FPGA (Xilinx Virtex
-1I) technology. The Montgomery multiplier
implemented is a variable-precision solution, FPGA
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is selected since it can be easily reconfigured for
different word size. Thus, their design area increases
correspondingly with the word size used. An FPGA
implementation cannot really be compared with an
ASIC implementation. However, the timing results
suggest 1hat the proposed ASIC implementation can
perform as well as the FPGA implementation.
Whereas the ASIC implementation cannot be
reconfigured, this proposed word size solution
design allows the system to work on any precision
so long as the precision does not exceed certain limit
size.
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