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ABSTRACT 

Solving unit commitment (UC) problem is one of the most critical tasks in electric power system 

operations. Therefore, proposing an accurate method to solve this problem is of great interest. The 

original bacterial foraging (BF) optimization algorithm suffers from poor convergence 

characteristics for larger constrained optimization problems. In addition, the stopping criterion 

used in the original BF increases the computation burden of the original algorithm in many cases. 

To overcome these drawbacks, a hybridized adaptive bacterial foraging and genetic algorithm 

(HABFGA) approach is proposed in this paper to solve the unit commitment problem with ramp 

rate constraint. The HABFGA approach can be derived by combining adaptive stopping criterion, 

BF algorithm and genetic algorithm, so that the drawbacks of original BF algorithm can be treated 

before employing it to solve the complex UC problem. To illustrate the effectiveness of the 

HABFGA approach, several standard and real test systems with different numbers of generating 

units are used. The results of HABFGA approach are compared with the results obtained using 

other published methods employing same test systems. This comparison shows the effectiveness 

and the superiority of the proposed method over other published methods. 

الهاماة دادا فاى  الاماو مان  مع الأخذ فى الإعتباا  يياود ملادل المرحاد  وحدات التوليدتحديد مساهمة حل مشكلة ان 
تشغيل رظم القوى الكه بية، لذلك فإن إيت اح ط يقه دييقه لحل هذه المشكلة من الأمو  ذات الإهتمام الكبيا   ط يقاة 

التقا ب البطىء  بالإضاافة الاى ان ملياا  التويام المساتخدم  البحث عن الطلام الد ثومى الأصلية تلارى من مشكلة
فى هذا البحث تم إيت اح ط يقة مثلاى هديراه وذلاك  يزيد من زمن الحسابات للخوا زمية الأصلية  لحل هذه المشاكل

يقاة وبالتاالى ياتم التغلاب علاى عياوب ط ه مع الخوا زمية الديرياة، يبدمج ط يقة البحث عن الطلام الد ثومى التكيف
تام تقيايم وحادات التولياد الملقاد    تحديد مساهمةالبحث عن الطلام الد ثومى الأصلية يبل استخدامها فى حل مشكلة 

بلا  الطا ا المرشاو    أثبتات و مقا راة الرتاا ج ماع  أرظمة يياسية وأخا ى حقيقياةأداء الط يقة المقت حة باستخدام 
 ى المستخدمة فى المقا رة الرتا ج تفوا الط يقة المقت حة على الط ا الأخ 

Keywords: Unit commitment, ramp-rate constraint, adaptive bacterial foraging, hybridized adaptive 

bacterial foraging and genetic algorithm. 

 

1. INTRODUCTION  

It is very important to reduce the running costs of 

electric energy because of increasing the energy 

prices all over the world. The unit commitment (UC) 

problem can be defined as the problem of 

determining which generating units will be in service 

during a scheduling period with minimum operating 

cost. All committed units must satisfy the system 

demand and reserves subject to various constraints at 

minimum operating cost. UC is essential to the daily 

operation of modern power systems where the 

accurate UC schedule can save a lot of money by 

reducing the generation cost [1]. 

UC is a nonlinear mixed integer constrained 

optimization problem. The complexity of the UC 

problem increases when the dynamic constraints such 

as ramp rate constraint are considered. Ramp rate 

constraint is the maximum rate of change of the 

output in MW/min. The inclusion of this constraint 

requires the change of the range of output power for 

each generating unit at every time instant [2]. 

Various methods are proposed in the literature to 

solve the UC problem. These methods can be 

classified into three categories: single classical 

approaches, single non classical approaches (artificial 

intelligent based methods) and hybrid techniques. 

The former one includes many techniques such as: 

priority list (PL) [3], dynamic programming (DP) [4], 

Branch and Bound [5], integer/mixed integer 

programming [6] and Lagrangian relaxation (LR) [7]. 

The classical approaches are fast and simple. But, 

they are inadequacy in solving the nonlinear and non-

convex search space of the UC [8]. 

The artificial intelligence (AI) techniques like tabu 

search (TS) [9], simulated annealing (SA) [10], 

particle swarm optimization (PSO) [11], genetic 

algorithms (GA) [12], shuffled frog leaping 

algorithm [13], artificial bee colony algorithm [14], 
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etc. attract the researchers, because of their ability to 

search not only for local optimal but also for global 

optimal. Although these methods impose no 

restriction on the problem formulation, these methods 

do not guarantee to find the global solution [1]. 

To solve the complex optimization problems such as 

the UC problem effectively, many hybrid methods 

are used in literature [1], [15]–[18]. The hybrid 

methods have some merits. They reduce the search 

space. In addition, they have better quality of 

solutions for small and large scale problems. 

Moreover, they give solution in an acceptable 

computation time. Finally, they can accommodate 

more constraints. 

Since long time, GA is highly addressed to solve the 

UC problem [2], [19], [20]. GA is a search heuristic 

that mimics the process of natural selection. It 

generates solutions to the optimization problems 

using basic genetic operators such as selection, 

crossover and mutation. However, GA is successfully 

applied to several problems from different domains, 

it has a drawback. It gives a very fast initial 

convergence, followed by progressive slower 

improvements [21]. 

Recently, bacterial foraging (BF) algorithm has been 

proposed and employed to solve many optimization 

problems [22]–[25]. The BF algorithm is based on 

social and cooperative behaviors found in nature. The 

three main stages of original BF algorithm are, 

chemotaxis, reproduction and elimination-dispersal 

[22], [23]. However, the original BF has been applied 

to solve several real world optimization problems, it 

has a drawback. The original BF suffers from poor 

convergence characteristics especially for non-

convex and larger constrained problems. Hence, in 

order to use it to solve the complex and non-convex 

optimization problem, this drawback should be 

treated first [26]. 

Because of UC problem is a nonlinear mixed integer 

constrained optimization problem, the research work 

in this area is still a challenge to the scholars. 

Therefore, in this paper, a hybrid adaptive bacterial 

foraging and genetic algorithm (HABFGA) is 

proposed to solve the UC problem with ramp rate 

constrained. The HABFGA approach uses the same 

operators as GA and BF. In addition, an adaptive 

stopping criterion is used in the HABFGA approach 

so, the maximum number of iterations can be chosen 

based on the improvement of the objective function. 

By using HABFGA method, the global optimization 

capability can be improved and the delay in reaching 

the global solution can be reduced. The proposed 

method is evaluated using different standard and real 

test systems and compared with some published 

methods employing the same data. The contributions 

of this paper are: to propose a hybridized adaptive 

optimization algorithm by combining GA, BF 

algorithm and adaptive stopping criterion, to apply 

the proposed method to solve the UC problem with 

ramp rate constraint and to improve the UC problem 

solution compared to other published methods. 

The paper is organized as follows: Section 2 gives 

the mathematical formulation of the UC problem. 

Section 3 gives a brief overview of GA and BF 

algorithm. The HABFGA method is described in 

Section 4. Experimental results and comparisons with 

other methods are presented in Section 5. Finally, 

Section 6 concludes the work. 

2. UNIT COMMITMENT PROBLEM 

FORMULATION  

2.1 Objective Function 

Unit commitment aims to minimize the total 

production cost over a time horizon while satisfying 

equality and inequality constraints. The total 

production cost equal to the production cost plus the 

startup costs of all generating units over the entire 

time horizon [27]. 

The objective function of the UC problem can be 

defined as following: 
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where 
t

iP is the output power of unit i at period t, 

t

iu is the commitment state of unit i at period t (on = 

1 and off = 0), )( t

ii PF is the fuel cost of unit i at 

output power
t

iP , 
t

iS is the startup price of unit i at 

period t, N is the number of generating unit and T is 

the total number of scheduling periods. 

Fuel cost function )( t

ii PF is always defined using 

the following second order equation: 

               
2)()( t

ii

t

iii

t

ii PcPbaPF                (2) 

where ai, bi, ci are the cost coefficients for the 

generating unit i. 

The start-up cost (
t

iS ) of unit i at time t is usually 

expressed by the following form: 
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where HS
i
, CS

i
 is the unit’s hot/cold star-tup cost, 

CH
i
 is the cold start hour, 

t

ioffX ,  is the number of 

hours the unit i has been off line and 
down

iT  is the 

minimum down time of unit i. 
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2.2 Constraints 

1) Generating limits: 

                     
maxmin
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2) System power balance: 
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where D
t
 is the customers’ demand at time t (t =1,..., 

T). 

3) Spinning reserve: It can be modelled as follows: 
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where R
t
 is the spinning reserve requirements. 

4) Minimum up time: 
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where, 
t

ionX , is the number of hours the unit has been 

on line and 
up

iT is the minimum up time. 

5) Minimum down time: 
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where, 
t

ioffX , is the number of hours the unit has 

been off line and 
down

iT is the minimum down time. 

6) Up/down ramp rate limits: The output power of 

generator i at time t may affect its output in the next 

time. So, the ramp-rate limitation can be 

mathematically stated for any unit as follows: 
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where URi and DRi are the ramp-up and ramp-down 

limits of generator i (MW/h), respectively, i = 1, ..,N 

and t = 1, ..., T. 

The generation capacity can be rewritten according to 

the ramp-rate limits as follows: 
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3. GENETIC AND BACTERIAL FORAGING 

ALGORITHMS OVERVIEW 

3.1 Genetic Algorithm 

Genetic Algorithm (GA) which is invented by John 

Holland in the 1960’s [21] is numerical optimization 

algorithm inspired by both natural selection and 

genetics. The first step of GA is generating a 

randomly population of individuals, which will be 

spread throughout the search space. There are no 

specific rules for the number of individuals in a 

population but it can be determined according to the 

nature of the problem. In general, the individuals can 

be encoded based on bits, labels, integers, real 

numbers, logic based rules and any other finite 

alphabet adequate to encode the solution space 

supplied with an en/decoder function. 

Once a population is generated, a fitness function is 

used to evaluate the individuals and sort them 

according their fitness score. A fitness function is a 

function that assigns a quality measure to the 

individuals (chromosomes). Following this initial 

process the initial population of individuals is then 

processed by selection, crossover and mutation 

operators in order to drive the population towards the 

global optimum solution. 

Selection is the next step of GA in which the better 

individuals based on their quality are chosen from a 

population to become parents of the next generation. 

Parent selection is responsible for pushing quality 

improvements. In the crossover step the useful 

segments of different parents are combined to form 

an offspring. The crossover step is followed by the 

mutation step. In the mutation step the offspring are 

randomly changed according to small rate called 

mutation rate. The mutation step is important to 

prevent loss of genetic diversity and premature 

convergence. After the application of these three 

operators, a new population will have been created 

and the number of generations is increased by one 

and the iterative cycle is repeated until a termination 

condition is reached [21], [28]. 

3.2 Bacterial Foraging Algorithm 

Bacterial Foraging (BF) algorithm is accepted 

recently as a global optimization algorithm. The BF 

is based on social and cooperative behaviors found in 

nature [22]. The BF algorithm begins with creation of 

an initial population where its size equal to the 

number of bacteria. These bacteria try iteratively to 

reach a global optimum through four stages namely 

chemotaxis, swarming, reproduction and elimination 

dispersal [22]. 

The chemotaxis which is the first stage in the BF 

algorithm can be achieved through swimming and 

tumbling an E.coli cell via flagella. By changing 

between swimming and tumbling modes of motion, 

the bacterium spends its lifetime. A tumble can be 
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represented by a unit length ϕ(j) in a random 

direction. The step size in this random direction,   

C(i, j), is depending on the dimensionality of the 

optimization problem and can be represented by the 

constant run-length unit. 

Suppose that we want to minimize of the cost 

function J(θ), θ is the position of a bacterium,       

θi(j, k, l) represents i
th

 bacterium at j
th

 chemotactic, 

k
th

 reproductive and l
th

 elimination dispersal step, 

C(i) is the size of the step taken in the random 

direction specified by the tumble and ϕ(j) is the unit 

length random direction. Then the movement of the 

bacterium in the chemotaxis process can be 

represented by [22], [29]: 
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where Δ indicates a vector in the random direction 

whose elements lie in [-1, 1]. 

Swarming is basically the cell to cell signaling stage. 

In this stage the E.coli cells congregate into groups 

and move as concentric patterns with high bacterial 

density. The following function presents the cell-to-

cell signaling in E.coli swarm [29]: 
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where Jcc(θ, P(j, k, l)) is a time varying function. This 

function is added to the actual cost function          

(J(i, j, k, l)) to present a time-varying fitness function, 

dattract, wattract, hrepellant and wrepellant are coefficients 

that represent the characteristics of the attractant and 

repellant signals released by the cell and 
i

m is the m
th

 

component of i
th

 bacterium position θ
i
. P(j, k, l) is the 

position of each bacterium of the population of the S 

bacteria and is defined as [26]: 

        },...,2,1),,,({),,( SilkjlkjP i      (17) 

where S is the size of the bacteria population. 

In the reproduction stage, only the fitter bacteria 

which have lower value of the objective function, 

remains while the weaker bacteria eventually die. 

After that each of the fitter bacteria split into two 

bacteria at the same location thus keeps the swarm 

size constant. While in elimination and dispersal 

stage, some bacteria may be eliminated or disperse 

with a very small probability due to the sudden 

events. This avoids falling into premature 

convergence. 

Suppose that S is the number of bacteria, Nc is 

chemotactic loop limit, Ns is swim loop limit, Nre is 

the reproduction loop limit, Sr is number of bacteria 

for reproduction, Ned is elimination-dispersal loop 

limit, Ci is step sizes (they depend on the 

dimensionality of the problem) and ped is probability 

of elimination dispersal. Based on the above steps 

and parameters, Passino [22] proposed the BF 

algorithm which is summarized in Fig. 1 [22]. More 

details of the BF optimization algorithm can be found 

in [22], [30]–[32] 

Begin

Initialize input parameters 

Create a random initial swarm of bacteria 

                      

Evaluate 

For k = 1 to Ned Do

For j = 1 to Nre Do

For i = 1 to Nc Do

For m=1 to S Do

Perform the chemotaxis step

(Tumble-swim or tumble-tumble)

For bacteria 

End For

End For

Perform the reproduction step by eliminating

the Sr (half) worst bacteria and duplicating

the other half

End For

Perform the elimination-dispersal step for all 

Bacteria   

with probability   

End For

End
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Fig.1 BF algorithm [22] 

 

4. HYBRIDIZED ADAPTIVE BACTERIAL 

FORAGING AND GENETIC ALGORITHM 

(HABFGA) 

However, the conventional BF has been applied to 

solve several real-world optimization problems, it has 

some drawbacks. The problem with BF as indicated 

in [22] is that if the steps taken by bacteria are too 

large, the bacteria will tend to leap out of the search 

space by swimming without stopping. But, if the step 

size values are too small, convergence can be slow. 

In addition, the premature convergence to local 

minima can occur, if the number of chemotactic steps 

is too short or if the number of reproduction levels is 

not sufficient. To overcome these drawbacks and to 

be able to apply BF to solve the complex and high 

dimensioned search space, there are some trials to 

hybridize BF with different other algorithms [23], 

[33]. 
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However, hybridizing BF with different other 

algorithms as in [23], [33] improve the accuracy of 

the conventional BF algorithm, they still have high 

computation burden. In BF algorithm, the stopping 

criterion determined based on the maximum number 

of the chemotactic steps, the reproduction steps and 

the elimination/dispersal events which increases the 

computation burden of the BF algorithm in some 

cases. Therefore, Farahat et. al. [26] applied an 

adaptive stopping criterion by adjusting the 

maximum number of iterations depending on the 

improvement of the cost function. In this criterion, 

the chemotaxis operation stops either when the 

solution is found that satisfies minimum criteria or 

when the fixed number of chemotactic steps is 

reached. 

In order to treat the drawbacks of conventional BF 

algorithm and the hybridize BF with different other 

algorithms [23], [33], hybridized adaptive bacterial 

foraging and genetic algorithm (HABFGA) is 

proposed in this paper. The proposed algorithm can 

be derived by combining BF algorithm, GA and 

adaptive stopping criterion. In the proposed 

algorithm, there are no cell to cell attraction and 

repellent effects while the new individuals are 

generated via mutating all the dimensions from the 

eliminated bacteria. 

The steps of the HABFGA algorithm are as follows: 

Step 1: Initialize the bacterial foraging parameters: 

S: number of bacteria in the population. 

p: dimension of the search space. 

Ns: the length of a swim when it is on a  

gradient 

Nc: number of chemotactic steps taken by 

bacteria in its lifetime. 

Nre: number of reproduction steps. 

Ned: number of elimination-dispersal events. 

Ped: probability of elimination-dispersal. 

C(i): the size of the step taken in the random 

direction specified by the tumble. 

ϕ(j): random vector which elements lie in       

[-1,1]. 

θi: the initial random location of each 

bacterium 

Step 2: Starting of elimination-dispersal loop:            

(l = l + 1). 

Step 3: Starting of reproduction loop: (k = k + 1). 

Step 4: Starting of chemotaxis loop: (j = j + 1). 

 Take a chemotactic step for each bacterium (i). 

 Then the fitness function: J(i, j, k, l) can be 

calculated. Let Jlast = J(i, j, k, l). so that the 

lower cost could be found. 

 For i = 1, 2, ...S, the tumbling/ swimming 

decision can be taken as following: 

Tumble: a random vector Δ(i) ∈  R
p
 is 

generated with each element Δm(i),m = 1, 2, ..., 

p being a random number on [-1, 1]. 

Move: Let 

   

)()(

)(
)(),,(),,1(

ii

i
iClkjlkj

T

ii




   

Fixed step size in the direction of tumble for 

bacterium i is considered. 

 Swimming loop: Let z = 0 (z is a counter for 

swim length). 

While z < Ns 

Let z = z + 1 

 If J(i, j + 1, k, l) < Jlast, then let                     

Jlast = J(i, j + 1, k, l). Let 

               )()(),,(),,1( jiClkjlkj ii    

Then the new fitness function J(i, j + 1, k, l) 

can be computed. 

Else, let z = Ns (the end of the while 

statement). 

 Go to next bacterium (i = i + 1 if i S). 

 Apply GA operators (crossover and mutation). 

A modified simple crossover [21], [23] is used 

as following: 
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where 
v

j

u

j yy , refers to parent’s generations 

and 
v

j

u

j yy ~,~
refers to offspring’s generations 

and j is the chromosome of j
th

 step and λ is the 

multiplier. 

The offspring produced in the crossover step is 

mutated with some probability to escape local 

minima [23]. Dynamic mutation [21] is used 

in the proposed approach as following: 
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where L and U are lower and upper domain 

bounds of the variable yj , k is the generation 

number, the random constant τ becomes 0 or 1 

and Δ(k, yj) is given as: 
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where, η is a random number from [0,1], Z is 

the maximum number of generations which is 
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defined by the user and b is a system 

parameter determining the degree of 

dependency on iteration number. 

 After that the best (lower) cost obtained 

(Jbest(j)) can be computed. 

 The difference (D) in cost achieved in the 

current chemotactic step can be calculated: 

D(j) = Jbest(j) − Jbest(j − 1). 

 If j > Nc /v (e.g. v = 2). 

 If |D(j) − D(j − b)| < ε, b = 1, 2, ...bm and       

bm < Nc /v. 

j = Nc (i.e. end chemotactic operations). 

Step 5: If j < Nc, go to Step 4 (increase j by 1). 

Step 6: Reproduction: Compute the health of the 

bacterium i as following: 
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Sort the bacteria and chemotactic 

parameters C (i) in ascending order where 

bacteria which have higher cost (higher cost 

means lower health) will die and the 

remaining bacteria reproduce. 

Step 7: If k < Nre, go to Step 3 (increase k by 1), 

otherwise, go to Step 8. 

Step 8: Elimination-Dispersal: The bacterium is 

eliminated and/or dispersed with probability 

Ped. So, the number of bacteria in the 

population is kept constant. 

Step 9: If l < Ned, then go to step 2 (increase j by 1); 

otherwise end. 

5. NUMERICAL RESULTS 

Numerical results from different standard and real 

test systems are presented to show the effectiveness 

of the HABFGA algorithm. Because of the stochastic 

nature of HABFGA method, 30 independent runs 

with random initial solution for each run were 

conducted for each system and results (minimum, 

average, maximum) were calculated. 

In the implementation of HABFGA method, many 

parameters should be selected. The selection of 

suitable values of these parameters is very important 

in improving the speed of convergence and solution’s 

quality. The best values of these parameters for each 

system were selected from empirical tests by running 

the algorithm several times with different parameters 

combinations. The HABFGA method is implemented 

in Pentium 4 personal computer with 2.8 GHz clock 

frequency and 2 GB of random access memory using 

MATLAB R2012a. 

 

 

5.1 Case 1: Using Standard Test Systems 

To examine the performance of HABFGA method in 

comparison with some published methods, the 

HABFGA method was tested using different standard 

systems. These standard systems are 10, 20, 40, 60, 

80 and 100 unit systems. The scheduling period is 24 

h. The unit data for a 10-unit system and the load 

data for this system can be found in [34]. To get the 

data of the 20 unit problem, the data of 10 unit 

system were duplicated. Also, the load data of 10-

unit system was multiplied by 2. The problem data 

were scaled appropriately for the problem with more 

units. These systems are considered in this paper 

because these systems are the most widely studied 

systems to solve UC problem in the literature [2]. 

In all systems, the spinning reserve is chosen to be 

constant and equal to 10% of the forecasted load 

demand at any time instant. In addition, when ramp 

rate constraint is considered both the ramp-up and 

ram-down limits of each generating unit are assumed 

to be 20% of the maximum limit of power output of 

that unit. 

The HABFGA algorithm is applied to the 10, 20, 40, 

69 80 and 100-unit systems 30 times with different 

initial solutions. Table 1 shows the best production 

costs, the worst production costs, the average 

production costs and the standard deviation, obtained 

over 30 independent runs for each power system. It 

can be observed that the standard deviation which 

demonstrates the small variation range of the total 

cost value obtained by the HABFGA method over 30 

runs of a system is not so high, which illustrates the 

reliability of the method over different runs with 

different parameter settings. Also, one can notice 

that, by considering ramp rate a slight increase of the 

total cost of the system occurs. 

The performance of HABFGA method without 

considering the ramp rate constraint is compared with 

genetic algorithms and tabu search (GA-TS) [35], 

Lagrangian relaxation and genetic algorithms (GA-

LR) [36], differential evolution (DE) [37], ant colony 

(AC) [38], shuffled frog leaping algorithm (SFL) 

[39] and binary-real-coded genetic algorithm 

(BRGA) [2]. Table 2 shows the results of this 

comparison which shows that the HABFGA method 

yields enhanced results over other published 

methods. 

In addition the performance of HABFGA method 

with considering the ramp rate constraint is compared 

with SA algorithm [10], improved priority list and 

enhanced particle swarm optimization (IPL-EPSO) 

[15] and BRGA [2]. This comparison is shown in 

Table 3. The results show the superiority of the 

HABFGA method over other published methods 

when considering the ramp rate constraint.
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Table (1), The Solutions Obtained From 30 Independent Runs for Each Power System. 
 

Number 

of units 

Cost without the ramp rate constraint ($) Cost with the ramp rate constraint ($) 

Minimum Average Maximum 
Standard 

deviation 
Minimum Average Maximum 

Standard 

deviation 

10 560318 560458 560623 16 562022 5621968 562399 22 

20 1121926 1122301 1122724 41 1124726 1125198 1125700 53 

40 2241781 2242334 2243001 87 2248407 2249058 2249778 80 

60 3360827 3361514 3362337 89 3370677 3371325 3372151 104 

80 4481901 4482904 4484008 125 4494901 4496124 4497044 141 

100 5601522 5603100 5604421 308 5617322 5619057 5620371 228 
 

Table (2), The Solutions Obtained From 30 Independent Runs for Each Power System. 
 

Method 
Production cost in ($) 

10-unit 20-unit 40-unit 60-unit 80-unit 100-unit 

GA-TS [35] 561238 — — — — — 

GA-LR [36] 564800 1122622 2242178 3371079 4501844 5613127 

DE [37] 562921 1125546 2247570 3365125 4486010 — 

AC [38] 563938 1123297 — — — — 

SFL [39] 564769 1123261 2246005 3368257 4503928 5624526 

BRGA [2] 563938 1124290 2246165 3365431 4487766 5606811 

HABFGA 560318 1121926 2241781 3360827 4481901 5601522 
 

Table (3), Comparison of the Production Cost Produced by the HABFGA, With the Ramp Rate Constraint, With Those 

Produced by Some Other Published Techniques 
 

System 
Production 

Cost 

Method 

SA [10] IPL-EPSO [15] BRGA [2] HABFGA 

10-unit 

Minimum ($) – – 565662 562022 

Average ($) – – 565858 5621968 

Maximum ($) – – 566073 562399 

20-unit 

Minimum ($) – 1144278.52 1127110 1124726 

Average ($) – 1144388.63 1127585 1125198 

Maximum ($) – 1144578.68 1128103 1125700 

40-unit 

Minimum ($) 2255864 2288799.92 2252841 2248407 

Average ($) 2256971 2288833.43 2253592 2249058 

Maximum ($) 2258897 2288883.70 2254412 2249778 

60-unit 

Minimum ($) – – 3375332 3370677 

Average ($) – – 3376180 3371325 

Maximum ($) – – 3377106 3372151 

80-unit 

Minimum ($) – – 4500780 4494901 

Average ($) – – 4502043 4496124 

Maximum ($) – – 4503423 4497044 

100-unit 

Minimum ($) – – 5622688 5617322 

Average ($) – – 5624623 5619057 

Maximum ($) – – 5626737 5620371 
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The results show that the HABFGA method performs 

well despite the high dimensionality of the search 

space with or without considering the ramp rate 

constraint. 

5.2 Case 2: Using real test systems 

In this case two real test systems are used to show the 

effectiveness of the HABFGA method. The first 

system is from the practical Taiwan Power 

(Taipower) and consists of 38 generating units. The 

time horizon in this case is also 24 h. The details of 

this system can be found in [40]. In this system, start-

up costs of units are constant. The maximum 

spinning reserve constraint is used as a constant and 

equal to 11% of the total power demand. 

Table 4 shows the comparison of total production 

costs obtained from the HABFGA method and those 

obtained from constraint logic programming (CLP) 

[40], fuzzy optimization (FO) [41], matrix real coded 

genetic algorithm (MRCGA) [42], absolutely 

stochastic simulated annealing (ASSA) [43] and 

improved priority list and augmented Hopfield 

Lagrange neural network (IPLALH) [16] for two 

cases, with and without ramp rate constraints. The 

results show that the HABFGA method gives total 

production costs less than the total production costs 

obtained from other published methods in all cases. 

 

Table (4), Comparison of the Total Production Cost by the 

HABFGA with those Produced by Some Other Published 

Techniques for 38 Unit System. 
 

Problem Method 
Total Cost 

($ x 10
6
) 

Neglecting 

ramp rate 

constraint 

CLP [40] 208.1 

FO [41] 207.8 

MRCGA [42] 204.6 

ASSA [43] 196.70 

IPL-ALH [16] 196.31 

HABFGA 193.82 

With ramp 

rate 

constraint 

CLP [40] 213.8 

FO [41] 213.9 

MRCGA [42] 206.7 

ASSA [43] 198.84 

IPL-ALH [16] 197.05 

HABFGA 194.97 

 

The second real system used in this paper which 

consists of 45 generating units is extracted from 

generation system mainland Spain. The details of this 

system can be found in [44]. As in the first system, 

the time horizon is 24 h and start-up costs of units are 

constant. While the maximum spinning reserve is set 

to be 10% of the power demand. Table 5 shows the 

comparison of total production costs obtained from 

the HABFGA method and those obtained from 

Parallel Repair Genetic Algorithm (PRGA) [44] and 

IPL-ALH [16]. From these results, one can notice the 

superiority of the HABFGA method over others. 

 

Table (5), Comparison of the Total Production Cost by the 

HABFGA with those Produced by Some other 

Published Techniques for 45 Unit System. 
 

Method Total Cost ($) 

PRGA [44] 1032415327.0 

IPL-ALH [16] 1029104737.4 

HABFGA 1024115931.0 

 

From the above results (Tables 1- 5), the HABFGA 

method are compared with some published methods. 

The results of the published methods used in these 

comparisons have been directly quoted from their 

corresponding references. Observing the results 

obtained by the HABFGA method, the following 

remarks are made. By comparing of the total cost in 

these tables, the effectiveness and the superiority of 

the proposed method are clearly determined 

considering or without considering ramp rate 

constraint. Also, the HABFGA method obtains lower 

total production cost than other published methods 

using standard or real systems. In addition, the 

difference between minimum and maximum cost of 

the HABFGA method are small, which show the 

stability of the results obtained by the HABFGA 

method. 

Based on the above results, the HABFGA method 

has high-speed convergence, but its computational 

burden (several minutes) is high compared with some 

published method. The real life UC problem is solved 

off line and solution time of several minutes is 

acceptable. This makes it possible to use the 

HABFGA method to solve the real life UC problem. 

6. CONCLUSION 

In this paper, an optimization method called 

HABFGA was employed to solve the UC problem 

considering the ramp rate constraint. The HABFGA 

approach can be derived by combining adaptive 

stopping criterion, BF algorithm and genetic 

algorithm, so that the drawbacks of original BF 

algorithm can be treated. The feasibility and 

efficiency of the proposed method have been 

demonstrated using the commonly used standard test 

systems and two real world test systems. The 

numerical results were compared with the recently 

reported approaches. The numerical results revealed 

that the UC solution obtained by the HABFGA 

method led to a smaller total generating cost than 

those obtained using other published methods, which 
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showed the ability of the HABFGA algorithm to find 

the global or near global solutions for the UC 

problem considering ramp rate constraint. These 

results show that the HABFGA method is a 

promising tool for solving UC problem in practical 

large power systems. Future work includes 

incorporating security issues and renewable energy 

sources as an extension to this work. 
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