Menofiya University
Faculty of Enginearing
Dept of Mech. Power Engineer ing Date: 1/1/2014
Total Marks:90

Final Term Exam
Academic Year: 2013-2014
$2^{\text {nd }}$ Power
Allowed Time: 3 Hours
Subject/Code: Measurements and Electronics / ELE217
This exam measures ILO's no. A3, B1, C1, C3, C4)
Remarks: No. of pages: $2 \quad$ No. of questions: 6
Allowed Tables and Charts: (A one)

Answer All The Followi ig Questions:

The First Question ($10-\mathrm{M}$: rks)

a) Define: Accuracy Sensitivity - Error-Types of Error
b) A set of inclependen current measurements was taken by six observers and recorded as:
$3.1 \mathrm{~mA}, 12.9 \mathrm{~mA}$ and 12.4 mA .
Calculate:
$12.8 \mathrm{~mA} .12 .2 \mathrm{~mA}, 2.5 \mathrm{~m}$

1) The arithmetic mean
2) The deviations from the mean

The Second Question (20-1 1arks)
a) Derive the torque er uations of the PMMC instrument. Then, write the general equation of motion for the PMMC instrument.
b) A basic d'Arsonval movement with internal resistance of 100Ω and half scale current deflection of 0.5 mt is to be converted into a multi-range d.c voltmeter with voltages ranges of $10 \mathrm{~V}, 50 \mathrm{~V}, 250 \mathrm{~V}$, and 500 V . Calculate the value of the multiplier resistances for the multiple range dr voltmeter circuit shown.

c) A moving iron volmeter reads correctly 250 Volt, when connected to 250 v (DC SUPPLY), determin: its reading when connected to $250 \mathrm{v}, 50 \mathrm{~Hz}$ (AC SUPPLY). The instrument coil has : resistance of 500Ω and an inductance of 1 H . (take the series non reactive resistance of 2000Ω)

The Third Question (15-M rks)

a) Explain one kind of the wattmeter errors and how to Compensate it?
d) A $250 \mathrm{~V}-10 \mathrm{~A}$ dyna nometer wattmeter has resistance for current and voltage coils of 0.5 . 12500Ω respective y. Find the percentage error when unity power factor load are connected at 250 voli for currents of 4 A .

Question (4)

(a) Draw the block dia;ram of a basic oscilloscope. Describe briefly the function of each block. Then, show how it can be operated in the Y-t mode. If one cycle of 1.25 KHz sine vave fills exactly 8 divisions wide onto a CRT graticule, what is the setting of the Time/Div switch.
(b) Draw and briefly e splain, with the aid of timing diagram, the operation of a Mod-10 counter.
(c) Using Linear Varial le Differential Transformer (LVDT), show how to measure a liquid level in a tuje.

Question (5)

(a) In the common cathode 7 -segment LED display, if the BCD number 0101 is applied to the BCL-to-7segment decoder/driver. What are the decoder/driver output and the decir ral digit to be displayed.
(b) Draw and explain the operation of a dual-slope digital voltmeter (DVM).
(c) For a dual-slope D'M, derive expressions for the capacitor voltage during the charging and discharging periods. If $\mathrm{R}=10 \mathrm{~K} \Omega$ and $\mathrm{C}=0.1 \mu \mathrm{~F}$ for the integrator. Also, if ${ }^{\prime} \mathrm{x}=3 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{F}}=5 \mathrm{~V}$, calculate:
i) The integrator ti ne constant.
ii) The capacitor charging and discharging currents.
iii) The charging an 1 discharging slops.

Question(6)

(a) Using suitable tran iducer, show how to measure the strain on a metal bar. Avoid thermal effect.
(b) A resistance strain ; auge with a gauge factor of 4 is fastened to a steel bar that stretches from $25 \mathrm{tt}, 25.01 \mathrm{~cm}$. If the strained resistance value of the gauge is 125.2Ω, what is the resistance value before strain.
(c) Using three decade counters with digital readout, show how to measure the frequency of a sinu oidal signal of about 6500 Hz . What is the time setting of COUNT in millisec nd.

Good Luck

