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ABSTRACT

This paper presents the application of a general
method of modelling of control systems with static conver-
ters in the current control of a separately excited d.c.
motor fed by a d.c. chopper. A non-linear discrete model
is obtained, taking into consideration the three interavals
of operation of chopper (duty, commutation and free-wheeling).
To determine the P-I current controller parameters, the
non linear model is linearised around an operating point
and the characteristic equation of the system is obtained.
To check the results a program of simulation is made taking

into consideration all the internal and external events.

1. LIST OF SYMBOLS

ic Instantaneous value of commutating capacitor current.
tb Commutation interval of chopper.

ta Duty interval of chopper.

tC : Free—-wheeling interval of chopper.

ki : Gain of current transducer.

*,K1: Controller parameters,

Ve o o® Instantaneous value of commutating capacitor voltage.
vy od Current reference.
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2. INTRODUCTION

Static converters usually present a basic cycle which
is divided in to several intervals. The problem is generaly
how to define the final state as a function of the intial
state which will be a discrete nonlinear recurrence equation.
Here we define a linearised model around a steady state
operating point to write the recurrence matrix MR such as

¥per = Mp 0%y

where 63n+1 and Gxn are the variation of the final and
intial states around the operating point

Then the problem is now to write the relations between
§X, and 8X .,

during a basic cycle.

for a system which presents various sturctures

The above regurious method of modelling applied in
this paper has been used in many application for d.c.
motor fed by thyristor bridge. References [1] and [2]
present this method for current and speed control of D.C.
motor. The classical controllers have been realized using
operational amplifiers. This method also can be applied
for modelling of such systems using digital controllers
[3,4]. In the above application the systems have either
one mode or two modes of operation (continnous or discon-
tinnous current operation). In the case where the motor
is fed by a d.c. chopper there are three modes of opera-
tion (duty, commutation and free-wheeling) which complicate
the analysis. The first attempt for applying this method
in the case of chopper was presented in [5] where the
current controller is of the proportional type.
Then, the system becames a first order one. In this paper
the current controller is of the proportional integral

type, thus the systems is a second order one.
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3, MODELLING PRINCIPLES [2,4]

The differential equation of one mode of operation is
written as

d§1 ’ .
where X, is the state varible of this mode ?
tn,tﬁ are the biging and the end instants for thi§ mode.

F + G

-~

Then the state equétion is

P&
_ e » .
where A1 = F1 GJ and 21 F1 y1

From the solution of equation (2) the state variable at

+ B, (t) (2)

the end of the mode can be written in the following form,

(t;lstn)A1 té (tr'l-t)A1
X, (') = e X, () + [J e B, (t)dt (3)
=1'"n =1 "n £ -1
n -t!a,
multiplying both sides of equation (3) by e n we get
] 1] -
§1(X1(tn), tn) = §1(X1(tn)' tn) (4)
with
—tA1 t - A1
E(XT' t) = e 51 -/ e ?(T)dT (5)
o

Equation (4) is a symmetrical recurrence equation between
the state at the end of the mode and the state at its
begining. This E function represents a very useful tool
for the modelling of the considered system. This function
is invariant on the trajectory (X(t), t). Its variations

verifies :

SE, (n") = 6E, (n) (6)
with §E = e R | §X =~ Y &t] (7)
where Y = A X + B
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4., DESCRIPTION OF THE SYSTEM

P-I current controller lEi 1
VO 1 u. D.C. D.C.
-—S K.] 'v-" I.G g h E— N
Current a chopper motor
referencd
AvI
K

Figure (1) System block diagram

As shown in Figure (1), the system consists of
separiately exited D.C. motor fed by a D.C. chopper
(Figure 2). The auxiliary thyristor T2 is fired at constant
instants (tn). But the main thyristor T1 is fired when
the control voltage equals the timing voltage (Figure 3).

The control voltage is the output of the P-I controller.

L 4

Figure (2) Equivalent circuit D.C. chopper
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Figure(3) Defintions of some variables
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5., PERFORMANCE EQUATIONS

The wave forms of the armature voltage and current
are shown in Figure (3). The system has three distinet
modes of operation. The performance equations for each

mode can be expressed in the following way.

6. DUTY INTERVAL (MODE A)

This interval has a duration t, - It starts at the
instant t;_1 when the control voltage (Va) equals the
timing wvoltage (Wa) as shown in Figure (3). At this

instant the main thyristor T, is gated on. The duty

1
interval ends at fixed instant tb which is the beging

of commutation.

The differential equations of this mode are (Figure 4)

Figure (4) Equivalent circuit with duty

interval.
di . _
L 3t + R1i = Ei EO (8)
du .

Equations (8) and (9) can be written in matrix form of

Equation (1) as :
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And if these equations are written in the form of state
Equation (2), we get ‘
-R/L 0

a = , B_ =
-Ki/T 0

7. COMMUTATION INTERVAL (MODE B)

" The dﬁration of this interval is t_. It begins when

; : b °
thyristor T, is fired by a timer at fixed instant tn’and

ends when the voltage across the capacitor equals (+Ei)

at~ih$tant tﬁ. The équationéﬁbf the system in this mode

are deduced from Figure (5) ‘and Figure (1).

v :#: | | L
___{:>F;__J .
E. o
1

 Figure (5) Equivalent circuil with commutation

interval.

di

L 3t + Ri + Vc = Ei - EO (10)
Soodw

< _ -
Cfdt i 0 | (11)
.Adu B _
Ta tKi=v, (12)

Similarly, as in mode (a), following Equations are obtained:
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+  8.FREE~WHEELING INTERVAL (MODE C)

When the voltage across the capacitcr beoomes (+z¥),

thyristor T, is turned OFF, and as 'r1 was glao OPF, then
free-wheeling interval begins (t)), The chOpper equivalent
circuit becomes as shown in Figure 6,

Figure (6) Equivalent circuit with ftee uheelinq
interval

" The equations is'this mode are

L

T

~E
o

= Y

we can be written

+ R 1
* K4
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;
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The free wheeling interval ends when the main thyristor

T1 is turned ON. This occurs when the control voltage

equals the timing voltage
Va(tn) = Wa(tn) (15)

The control voltage is the output of controller. Its

equation can be written directly from Figure (1), as
_ _ . _ 5T
Va(t) = K1[u(t) Ki i(t)] = Pr §c (16)
. T
with P = (~K,K, K.)
r 11 i

The linear timing voltage equation can be determined from

Figure (3)
T - (= t)

wa(t) = A, ] (17)
T
A1 : is the slope of the timing voltage
T : is the period of one basic cycle = ta + tb + tc
tc : is the free wheeling duration = t; - té

3. NON LINEAR MODEL OF THE SYSTEM

Using the E-function we can find the recurrence

relations for each mode,

E_ (£ = E_(t_,,) (18)
E () = E (&) (19)
E_ (t!) = E_(t!) (20)

each of the above recurrence equations represents the
relation between the state at the beging and the end of
the same mode. To join these three recurrences together
to get -the total rercurrence relation of complete basic
cycle (modes a, b, c), we fined the relations between
the states at the end of one mode and begining of the

next mode.
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X_(E7) = H__ X_(t") (23)

ac
with
1 0 1 0 0
Hpa =| 0 p By =L =11 s Gy = Cpe = '
0 0 0o o0 1
10
Hac =
0 1

10. THE LINEARISED MODEL

In the following analysis we try to establish a
linearised model of the system about a steady state
operating point defined by

ta-1 T T %
fh T Ener T 8
tn - tn+1 N to
i(er_ )= i(e) = it

Refering to equation (6), equations(18), (19) and (20)
can be written is linearised form as follows :

R, + B (t]) = SE (t . ) (24)
Ry ¢ SE (t ) = SE (t)) (25)
R, ¢ SE_(t!) = SE_(t]) - (26)

The joining relations between the end of each mode and the
beging of the next mode (Rab’ Rbc’ Rca) can be determined
using Equations (7), (21), (22), (23) and the controller
equation and timing voltage Equations(18) and (19).
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b o a
Rab : 6§b(tn) = e e Hba SE (tn)
“toPe -1 EoPy
. ' =
Rbc : ch(tn) e FC ch Fb e
“toRa tiAc
R,, t SE_(t}) = e My e SE (t")
H Yll - 'Yll
where : My = H__ + ac_ ¢ Ta Pf
A - Y"p
n c 'r

(27)

SE, (t!) (28)
(29)

(30)

Using the linearised recurrence equations (24 to 26)

and the joing relation (27 to 29) knowing that étn=6tn =0

-t A
(fixed instants) and §SE_(t ) = e °a sx
a n+1

a n+1

+1

(t )

The linearised recurrence equation of the system over one

complete cycle can be written as

6§a(tn+1) = Mg 6§;tn)
where the recurrence matrix MR is
t A t A t, A
_ aa cc _~1 b'b
MR = e MB e FC ch Fb e Hba
with - ;
] Y11 Y12
€ A ®91 %92 €A,
e = ¢ € ERPYER DY
%21 %22 ) }
1 2
¢l q)l—
_— 11 12
c’c
=) =
b2 $ -
21 22
1+(DEiK1Ki)/L —DEiK1/L
MB =
0 1

(31)

(32)

Thé expression for all coefficients are given in Appendix.

Equation (31) can be written in another form as,
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§i(n+1) §1i

= M (33)
du(n+1) su

Using the Z transform, the characteristic equation of the

system can be determined

2

Z7=Z Ry *Ryg byt By wg)d U (B A a=A 4 Ry5) = 00 (34)

11. CHOICE OF THE POLES OF THE SYSTEM

The characteristic Equation (34) is a second order

equation which has two roots Z, and Z., representing the

1 2
poles of the system where
ZqvZy = Bpy t Bg3 Vgt By oy (35)
2125 = qq(Byy Byz T Ay By3) (36)
choosing the poles Z1 and 22 for required response, the
parameters of the controller K1 and T, can then be
determined
1
K, =4 [ , (37)
T ' - 1
K,; (R 1O+EO)/IﬁEiKJ._/{L[(Z1ZZ/¢11 v3q Yqq) 11
T = D K1 B/ N (38)
with B =

- ; LR N - :
L Ki(cp11 1)Ei/R+®11EiL Ki(¢11 1)v11/R ¢11EiKiCb21

- ' v -
b= Lo+ oyg0qq¥q Lovoyy DEK K 61w,y 7 L(Z,42,)
If the dead beat response is chose, then Z1 = 22 =0
L A
K, = n (39)
K.[R i" + E_ - E.]
1 @] O 1
T = =[BAyg v 0qqKyg Vqq * 0gq Kyyl/Ky (40)

12, SIMULATION

A program of simulation of the system is mode taking
into consideration the different modes of operations and
the internal and external events. This program is based on

Rung-Kutta numerical method the flow chart is given in Fig. (7).
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Initialization
* Motor parameters

* Controller parameters

* Constant parameters

Mode 3 Mode 2 . Mode 1
T % ]
4th order
Rung Kutta

!

Search of discontinuities

during the step of integration

Calculation of the new step
and parameters by linear
interpolation

Y

Logic of conduction

Ag

End of simulation

STOP

Figure(7) Principal flow chart of the program of

simulation.
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13, RESULTS

The d.c. motor has the following characteristic

R

E
e}

5.27 ohm, L = 72.6 mH , Ki = 1 volt/Amp.
80 volt.

The linear timing voltage characteristics

A1 = 5 volt T = 5 m.s

Choper characteristics

C=4.74 x 1078 , E; =200 volt

Steady state operating point

i(tn) = Io = 378> A
VO = 3.8 volt

u = 7.9 volt

Controller parameters

K

T

0.73
0.00376

The simulation results are shown in figure (8) which
represient the current response due to step change in
current reference.

Figure (8) Simulation result
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14, CONCLUSION *

This papei deals with the application of a general
modelling method for electrical machines fed by static
converters. In this investigation the static converter
is a D.C.-D.C. chopper. The use of recurrence equations
and matricial joining conditions which joing the different
modes of operation permits to deduce an over all linearised
model. The characteristic equation of the system allows
the determination of the controller parameters for the
desired response. The poles of the current is choosen
equal zero in the Z plane to obtain the dead beat
response, The simulation results coincide with those

which obtained theoreticaly.

15, APPENDIX

A
= - _1 = - " = ' - = n_ ]
A, T Pty Tt -l g =t ty oot = El-t!
. oR/L ta
¢ =0
"2 L Ky 240
%29 T TR 0 TV = by, =T
B = R/2 L , w = /(1/LC)-(R/2L)2‘
-Bt,
Y = e [cos wt, = (B sin wt,)/w]
11 _Bt b b
o b .
¢12 = -e sin wtb/Lw
-Bt,
w21 = e sin mtb/Cw
-Bt,
w22 = e [cos wtb + (B sin wtb)/m]
wy =Ky Cuyy /m =R/
wy = TK;C Wy, = M) = Kyy/n
-th/L
' =
®11 e
] —
%12 0
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L K,

s ! = ———i ! - = -
*21 Re (090 T 1) = Kyl
D = 1/[An-K1Ki (R 1(tn) + EO)/L]
Ayy = 94401 + D E/KK/L)
Bipg % 99y 7 94y DE; KL
LY = .. (1 +DE. K XK /1)
Byy T %9y T 3gq DE; Ki/L
—_ 1} 1
Ayz T BAgq dqq T By 0y
—_ ) 1
Apg T B 99 T Byy 9p;
—_ 1 'S ]
Rog T Bgyy 9qq F Byy doy
P ] [}
BAog T Bgq b9 F Byt
REFERENCES

1] A.A.E1-HEFNAWY, S.A.MAHMOUD, "Speed and current control
of d.c. motor in continuous current operation",Electric
Machines and Power Systems journal, Volume 8, No.2,
March-April 1983,

2] A.A.EL-HEFNAWY, S.A.MAHMOUD, "Modelling and simulation
of speed controlled small d.c. motor in discontinuous
current operation”, International AMSE conference,

Paris-sud, July 1-3, 1982, vol.6, Group 6.

3] A.A.EL-HEFNAWY, J.P.LOUIS, J.F.AUBRY, "Current regulation

and speed control of contmicas motor modelling optimi-
zation, simulation, set-up candin Electrical journal,
vol.4, No.4, 1984.

4} J.F.Aubry, G.H.Pfitscher, A.A.EL-Hefnawy,J.P.Louis,
"Speed control of a d.c. motor, a low cost system using
a monochip Microcomputer", IEEE, IECI Proceedings 9-12,
Nov.,1981, san Francisco, U.S.A., pp. 393-398.

5} Jean.Paul LOUIS, "Application of A sampled data
Modelling of stmtic converters to the analysis and
synthesis of certain regulations"”, IMACS-TC1" Sympasium

on modelling and simulation of Electrical machines and

converters" May 17-18, 1984, liege, Belgigine.



