

Menoufia University

Faculty of Engineering, Shebin El-Kom, **Electrical Engineering Department**

First Semester Examination, 2013-2014

Date of Exam: 1/1/2014

Subject: Eng. Maths.

Code: BES 111 Year: 1st year

Time Allowed: 3 hours Total Marks: 140 marks

Answer the following questions

Question 1

(30 marks)

a) Solve the following differential equations:

(10 marks)

i)
$$\cos x \frac{dy}{dx} + y \sin x = 2x \cos^2 x$$

$$ii) y'' = e^{2x} + 3x$$

b) Test the convergence of the following series:

(10 marks)

$$i)\sum n^2 e^{-n^3}$$

ii)
$$\sum \frac{3n^3-2n^2+4}{n^7-n^3+2}$$

c) Draw and compute the Fourier series of the function:

(10 marks)

$$f(x) = \begin{cases} 0 & -\pi < x < 0 \\ x^2 & 0 < x < \pi \end{cases}$$

Question 2

(25 marks)

a) Solve the initial value problem by using Laplace transform:

(10 marks)

$$y'' + 2y' - 3y = 6 e^{-2t}$$

$$y(0) = 2, \ y'(0) = -14$$

b) Find the interval of convergence: $\sum \frac{(2x-3)^n}{4^{2n}}$

(5 marks)

c) Find the Laplace transform of the functions:

(10 marks)

i)
$$f(t) = (t+1)^2 e^{-3t}$$

ii)
$$u(t-5)e^{2(t-5)}\cosh(t-5)$$

Question 3

(30 marks)

a) Find the moments of inertia I_x , I_y , I_0 for the lamina that occupies the region D, where D is bounded by

$$y = e^x$$
, $y = 0$, $x = 0$, and $x = 1$; $\rho(x, y) = y$

(10 marks)

b) Find the orthogonal trajectories of the curve: $y^2 = C x^3$

$$v^2 = C x^3$$

(10 marks)

c) Find the inverse Laplace transform of the functions:

(10 marks)

$$i)\frac{1+e^{-2s}}{s^2-9}$$

ii)
$$\ln \frac{(s-1)^2}{s^2+1}$$

Question 4

(30 marks)

a) Solve the system of simultaneous differential equations:

(10 marks)

$$\frac{d^2x}{dt^2} + \frac{dy}{dt} = e^{-t} \qquad , \quad \frac{d^2y}{dt^2} - 2\frac{dx}{dt} = \cos 4t$$

b) Evaluate the triple integral $\iiint z e^y dx dz dy$ where D is given by

(10 marks)

$$D: 0 \le x \le \sqrt{1-z^2}, \quad 0 \le y \le 3, \quad 0 \le z \le 1$$

c) Solve the differential equation:
$$(x^2D^3 + 4xD^2 - 5D - \frac{15}{x})y = \frac{1}{x^3}$$

(10 marks)

Question 5

(25 mark

a) Solve the ordinary differential equations:

(10 marks)

i)
$$(\frac{3y^2}{x^2+3x})dx + (2y\ln\frac{x}{x+3} + 3\sin y)dy = 0$$
 ii) $p^2 - 2xp - 8x^2 = 0$

ii)
$$p^2 - 2xp - 8x^2 = 0$$

b) Use the definition of the Laplace transform to obtain the Laplace transformation for function: $f(t) = \sin at$

(5 marks)

c) Find the solution of the initial value problem:

(10 marks)

$$\frac{d^2x}{dt^2} - 16x = 32$$

$$x = 0, \frac{dx}{dt} = 2$$
 when $t = 0$