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1. INTRODUCTION

Flat-slab and flat-plate floors are characterized by - the
absence of the beams along the interior column lines. So, the
reinforced concrete slabs are supported directly on columns.
Flat-slab floors provide an adequate shear strength and better
resistance of the megative moments over the columns by having
drop panels or column capitals. Flat-plate system is used when
the spans are small and the loads are not so heavy. For larger
spans and heavier loads the flat-slab can bc used. Co

Flat-slabs with cantilevers are very popular because
they increase the allowable used space by distinct areas which

are very essential for many cases.

The behaviour of the reinforced concrete flat-slabs with .
drop panels and cantilevers are analyzed by using the nom--
linear finite element analysis, This was illustrated by solv-
ing a numerical example for a flat-slab with different lcngths

of cantilever at different loading. stages.

2. NONLINEAR ANALYSIS OF REINFORCED CONCRETE

The nonlinear behaviour of reinforced concrete struc-
tures are mainly attributed to the nonlincar stress-strain
relationship, cracking and crushing of concrete. The material
properties of concrete and steel depend on the stress or
strain state of the material. In this study the following

material properties are adapted.
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2.1. CONCRETE

The analytical ~model used in the present analysis was
originally developed by Darwin and Pecknold ' This model has
obtained a good match with the test results of kupfer and
Nilson. In Darwin’s model concrete is assumed to be am ortho
tropic material in the two principal stress directions. The
concrete is treated as an incrementally elastic ~material. At
the end of each increment, material stiffness and stress are
corrected to reflect the latest changes im deflection and
strain, The curves selected for compressive loading are
-based on an equation suggested by Darwin and shown in Fig. 1

-
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where o = the compressive stress.
E = the tangent modulus of clasticity at zero stress.
4

E = — 8“: = the secant modulus at the point of maxi-
- '° mum compress ive stress g
¢, = the equivalent uniaxial strain at the maximum
compressive stress. _
g = the equivalent uniaxial strain in the ith
direction.

The taralfént moduli in the principal directions for con-
crete im biaxial compression, can be obtained by differentiat-
ing Eq.(1) with respect to the equivalent uniaxial strain. ,

The values of the maximum stresses in the two principal

directions, a'lcand o,, are determined from the modified -

biaxial strength envelope of Kupfer and Gerstle ' 2!
suggested an analytical maximum strength  envelope which’ is
shown in Fig. 2. This criterion has been adapted in the
. present analysis. :

2.2 L STEEL

In reinforced concrete slabs, unlike beams, reinforce-
ment is usually more uniformly distributed, and reinforcing
bars tend to be smaller in size. In this study, the reinforce-
ment is assumed to be uniformly distributed over the element.
Thus each layer of reinforcement can be replaced by an equiva-
lent distributed  steel layer. The equivalent thickness of the
layer is  determined such that the corresponding area of the
reinforcement in the element remains unchanged.

- 38 -

They have




where A = the area of one reinforcing bar.

b = the spacing of the reinforcing bars.
u =the reinforcement concrete ratio.
d = the effective depth of the slab.

Fig. 3 shows the stress-Strain relation for steel which
has been considered in the analysis.

3. LAYERED DISCRITIZATION

In order to account for the varied material properties
within a finite clement, the element is divided into imaginary
concrete layers and steel layers (Fig. 4). According to the
Kirchhoff’s hypotheses the transverse normal stress is neg-
lected. Thus any point in the element may be considered to be
in a state of plane stress. The layered element approach,
imafines every element to consist of a number of concrete and
steel layers in plane state of stress so that the material
property matrix can be written for any stress or cracked |
state. The entire element stiffness is obtained by summing up
the stiffness of the layers.

3.1. EVALUATION OF THE ELEMENT STIFFNESS

The inteEration involving material properties can be
integrated layer by layer. Let ¢ and ‘s denote the number of
concrete layers and steel layers respectively for a typical
layer finite element shown in Fig. 4. ‘

Assuming the material properties are constant  within.
cach layer, the integration can be carried out as follows;
z

[D] = jsz] dz = 5I'=1j

1+1 s
z iDc] d{. + 1z ﬁDs] t ;
z 1=1

i

1

e (3

T e 1

8
1 3 3 2
1 @, + z)) [De} + 1):=1z [Ds] t, .

o

1

where - [De] is the material matrix of the i th concrete

layer. : .
[Ds] is the material matrix of the i th steel layer.
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3.2.EVALUATION OF LAYER STRAINS AND STRESSES

Once the nodal displacements are known, the membrane
strain on the reference plane {¢} and the curvature {K} can

be obtained. The strains at the centers of layers can be
computed. ..

{e}={e} -5 (z + 2){K )

il
e} {e} - (2) (K} ©)
The layer stresses are computed as follows. |
(o= e {e) e
{o}=1Ds1{¢} | = . 7N

i1

where { ¢} and { o} denote the strains and stresses at
the center of the ith concrete layer, {¢} and {o } denote
those at the center of the irh steel layer. '

4. CONCRETE CRACKING

Cracking in reinforced concrete is complicated by the pre-
sence of the steel reinforcement. When the concrete reaches
the ultimate tensile strength, primary cracks form at finite
intervals along the length. The total load is transferred ac-
ross these cracks by the reinforcement, but the concrete be-
tween cracks is still capable of carrying stresses because of

the bond between steel and concrete. This phenomenon is called
the "tension stiffening effect”.

Frank Vecchio'®' prepared a stress-strain relation for
concrete in principal tensile direction, as shown in Fig. $§
which gives good results with the experimental works. The
modulus of concrete EP decreases gradually as the strain in-

creases after cracking as follows;

f

E = e 8
P e( 1+ V200¢)

where f is the tensile cracking and €, is the straimn at any

stress level. This model is considered in the present study.
So, For any layer, when any of the principal stresses exceeds
the tensile strength, cracks will occur in a direction perpen-
dicular to that principal stress. The modulus of concrete is
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reduced according Eq.(8).

5. THE FINITE ELEMENT PROGRAM

The computer program has been developed to implement the
previous method of analysis. A layered quadrilateral isopara-
metric plate bending clement is chosem in the program. An inc-
remental procedure along with secant stiffness method is used.

The finite element program has been extended also to tak
ing into account the variable thickness of the slabs to consi-
der the effect of the drop panmels and the placement of the

steel reinforcement.

6.APPLICATION EXAMPLE

~..To study the effect of the cantilevers on the behaviour
of flat-slab system with drop panels during different stages
of loading, a numerical example for a roof of 18.0 x 18.0 'm is
presented. The design data are as follows;

Spacings between columns = 6.00 m.

Column dimensions = 0.40 x 0.40 m.
. Partition weight = 100 kg/m".

Service live loads = 250 kg/m® )
‘Compressive strength of concrete C, = 300 kg/om®.

':f Tensile strength of concrete F = 30 kg/cm®.

- Yield strength of reinforcement f = 4200 kg/cm®.
- Thickness of the slab t = 0.16 m.

- Thickness of the drop panels t = 0.08 m.

The drop panels considered in this example extent from
the center lines of the columns to 0.25 the span length in

each direction.

N

The following cases for the reinforced concrete flat-

slab with cantilever are studied;
Case 1 : L, = 0.0 (Without drop panel).

ca
Case 2 : L = 1.5 m. (Lca /L =025).
Case 3 : Lca = 2,1 m. ( Lca /L =035).
Case 4 : L, =24 m (L, /L = 040).
Case 5 : L, = 27 m. ( Lca /L =045).
. Case 6 : Lca = 30m. ( Lca /L = 0.50).
where L. : panel length in the considered direction.

Lc 2’ length of the cantilever neighboringto L .
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7. BEHAVIOUR OF FLAT-SLAB THROUGH LOADING

To show the changes in the behaviour of flat-slab - with
cantilevers during the history of loading, the foliowing
stages are considered;

Loading stage 1 : W, = D + L( working loads )
Loading stage 2 : W_ = 1.5 Wi(ultimate loads )
Loading stage 3 : W_ = 2.0 v
where W = Distributed load per unit area = W , or W, or W

according to the loading stage.
D = dead loads
L = live loads
The previous example is solved by the nonlinear F.E. pro-
gram to analyze the behaviour of the slabs for each case such
as the deflections at various locations and the distribution
of moments at different stages of loading.

3

8. ANALYSIS OF THE RESULTS

Figures 6 to 17 illustrate the contour lines of the
deflections for the flat-slab with different lengths of canti-
levers for loading stage 1 and 2. Also, Figure 18 shows the
values of the maximum deflections of the slabs. It is noticed
that the general behaviour of the deflections is improved and
decreased at anmy point within the flat-slab for L, = 04 L.
The maximum deflection is decreased by about 33%. for L ca

0.4 L than that without cantilever. The deflection for L c aa

0.45 L increased< due to the heavy cracks at the top of the
exterior column lines.

The distributions of the bending moments in the
cantilever at the long directions of the slab for L.,= 0.4 L

are similar to the neighboring half column and field strips.
Figure 20 (a,b) shows the distribution of the moments along
axes (X2- X2), (X3-X3) and (X5-X5), (figure 19) and Figure 21
(a,b) shows the distribution of the moments along axes (X1-X1)
and (X4-X4).

The cantilever slabs reduces the punching shear
stresses. This is due to the reduction of the unbalanced mome-
nts transfer to the edge and corner columns. and the increase
of the perimeters of the slabs which resist the punching shear
stresses.
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9. CONCLUSIONS

From the analysis of flat-slab with cantilevers by the
finite element method at the different loading stages it can
be concluded that;

- Whenever the length of the cantilever slabs increases the
general behaviour of the flat-slab improves. It is recommended
to limit the length of the cantilever to be equal 0.4 the adj-
acent span in the case of flat-slab with drop pamel t = 0.5 t

It is advised to make the cantilever slabs whenever possible
to reduce the deflections and the punching shear stresses for
the edge and the corner column. :

- The distributions of the bending moments in the cantilever
at the long directions of the slab must be considered. It is
recommended to reinforce this direction similar to the
neighboring half column and field strips respectively.
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