Minoufiya University
Faculty of Engineering
Mechanical Power Eng. Dept
Academic Year: 2014-2015

Date: 3-6-2015



Subject: Industrial Ventilation

Code: MPE 610

Academic level: Master. Time allowed: 3 hours Total degree: 100 marks

## Answer all the following questions:

Assume any missing data

Question-1

[30 marks]

a- Discuss with the aid of sketch the difference between the natural and industrial ventilating of the industrial zones. (6 marks)

b- Discuss the important role of the United State Organization to determine the industrial limits. And what is the meaning of the following abbreviations: ACGIH, OSHA and ANSI?

(6 marks)

c- The metal workshop contains the high level of carbon dioxide (CO<sub>2</sub>). The sources of this pollutants are outside air  $C_o$  (1.2  $\mu g/m^3$ ), initial concentration  $C_i$  and generating during the activity. The concentration can be calculated from the following equation  $C(t) = \int_0^t [C_i + C_o](t + e^{-2t}) + 0.0002 t] dt$ , where  $C(\mu g/m^3)$  and t (hrs). If the mole fraction  $(y_i)$  is 1 PPM, <u>calculate the following:</u>

i-Initial concentration (mg/m³) at standard temperature and pressure (STP),

ii-The concentration based on Time-Weighted Average (TWA-8 hrs),

iii- The concentration based on Short-Term Exposure Limits (STEL).

(18 marks)

Question-2

[40 marks]

a- Field measurements is method which are used to determine the contaminant generation. *Explain* this method and *mention* some examples about evaporation and diffusion processes for the industrial activities. (8 marks)

b- Trichlorethylene  $[C_2HCl_3]$  is a common nonflammable hydrocarbon used to clean metal surfaces. The molecular weight is 131. The enthalpy of vaporization at 86 °C and atmospheric pressure (P) is 57.5 cal/g, <u>find the following:</u>

i- the vapor pressure (Pc) at 28 °C, in mmHg

ii- The diffusion coefficient of  $C_2HCl_3$  in air in square meter per second, if critical parameters of Trichlorethylene are  $T_c$  =593 K and  $v_c$ =315.5 cm³/g.mol. Also, critical parameters of Air are  $T_c$  =126.2 K and  $v_c$ =90 cm³/g.mol and  $M_{air}$ =28.9.

iii- A thin layer of Trichlorethylene is put inside open drum with the following conditions: drum cross section area equals 0.25 m<sup>2</sup>, drum height is 0.8 m and the room temperature is 24 °C. Estimate the evaporation rate inside room (g/hr).

(32 marks)

Question-3 [30 marks]

a- Explain with the aid of diagram the performance curve of fan under specific conditions of fan volume and system static pressure. (6 marks)

b- Mention the different methods are used to control the fan air flow. (6 marks)

c- It is proposed to air-condition a room  $9m \times 5m \times 3.25m$  ceiling height and having a heat gain of  $42 \text{Wm}^{-2}$ , by supplying cool air from a grille mounted on a small side wall 180 mm below the ceiling. Select a suitable grille and assess the thermal environment in the occupied zone, assumed 1.75 m high. (18 marks)

Use the following relations if you need:

| For evaporation and diffusion                                                                                                                                                     | For the Side-wall supply                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|
| $-C_i = \frac{M y_i P}{R_u T}$                                                                                                                                                    | $N = 7.84 \sqrt[3]{qB/[(B+H)L^2]}  h^{-1}$                                              |
| $-\ln\frac{P_2}{P_1} = \left(\frac{h_{fg}}{R_u}\right) \left(\frac{T_2 - T_1}{T_2 T_1}\right)$                                                                                    | $T = 11.6\sqrt{(M_{\rm o}/\rho)} = 11.6 \ U_{\rm o}\sqrt{A_{\rm o}}$ m                  |
| $-\mathcal{D}_{12}\left(\frac{cm^{2}}{s}\right) = \frac{0.43}{K}\left(\frac{T}{100}\right)^{1.81}\sqrt{\left[\left(\frac{1}{M_{1}}\right) - \left(\frac{1}{M_{2}}\right)\right]}$ | $\Delta t_0 = 3q/(NH)$ K                                                                |
| where $K = P\left(\frac{T_{c1} T_{c2}}{10000}\right)^{0.1405} E$ , and                                                                                                            | $v_{\rm r} = 0.73\sqrt{[M_{\rm o}/(BH)]}$                                               |
| $E = \left[ \left( \frac{v_{c1}}{100} \right)^{0.4} - \left( \frac{v_{c2}}{100} \right)^{0.4} \right]^2$                                                                          | $y = H - (Z + d + 0.5b + \delta)$                                                       |
| $-N_c = \left[\frac{D_{12} P}{R_u T (Z_2 - Z_1)}\right] \ln \left[1 - \left(\frac{P_c}{P}\right)\right]$                                                                          | $r = 34.2 \left[ \frac{A_0 d}{y} \left( \frac{L^3 (B+H)}{(BH)^3} \right) \right]^{2/3}$ |
|                                                                                                                                                                                   |                                                                                         |

With best wishes

De-Ashraf Amin