Menofia University

Faculty of Engineering

Basic Engineering Sci. Department

Academic Year: 2019-2020

Date: 10 / 08 / 2020

Subject: Introduction in Partial

Differential Equations

Code: BES 507

Time Allowed: 3 hours

Year: Master

Total Marks: 100 Marks

Answer all the following questions:

(الامتحان في ثلاث صفحات)

Question 1

۲۰ marks

Method of characteristics. Solve the following initial-boundary value problem:

$$u_t + e^{-x}u_x = e^x;$$

$$u(x,0) = f(x);$$

$$u(0,t)=g(t);$$

You will need to separate the domain into two regions, and be sure to identify the boundary between the two regions.

Question 2

۲ · marks

Heat Equation.

(a) Use energy methods to show the following initial boundary value problem has at most one solution:

$$u_t(x,t) = f(t) \Delta u(x,t); \qquad f(t) > 0, x \in \Omega$$

$$u(x,0) = g(x); \qquad x \in \Omega$$

$$u(x,t) = h(x,t); \qquad x \in \partial\Omega, t > 0$$

Assume $f(t) \in C^{\infty}[0,\infty]$, $g(x) \in C^{\infty}(\partial\Omega)$, and $h(x,t) \in C^{\infty}(\partial\Omega \times [0,\infty])$ are all integrable functions and the domain Ω is simply connected.

(b) Find the solution to the heat equation on the n-dimensional half space:

$$\begin{aligned} u_t(x,t) &= k\Delta u(x,t); & x \in \Omega \equiv \left\{x \in \mathbb{R}^n \middle| x_n > 0\right\}, t > 0 \\ u(x,0) &= f(x); & x \in \Omega \\ \frac{\partial u}{\partial n}(x,t) &= 0; & x \in \partial\Omega \\ \lim_{|x| \to \infty} u(x,t) &= 0; & t > 0 \end{aligned}$$

Where k > 0 is a positive scalar, f(x) is continuous and L^2 integerable on \mathbb{R}^n , and n is the unit normal to the boundary $\partial \Omega$.

Wave Equation. Consider the equation:

$$\begin{split} u_{tt}(x,t) &= c^2 \Delta u(x,t),\\ u(x,0) &= f(x); & x \in \mathbb{R}^3,\\ u_t(x,0) &= g(x); & x \in \mathbb{R}^3, \end{split}$$

where c > 0 is a positive scalar, and $f(\mathbf{x})$ and $g(\mathbf{x})$ are rapidly decaying, C^{∞} , and L^2 integrable functions.

(a) Find the equation the average of u:

$$\overline{u}(\mathbf{r},t) = \frac{1}{4\pi} \int_{0}^{2\pi} \int_{0}^{\pi} u(\mathbf{x},t) \sin \varphi d\varphi \ d\theta$$

satisfies where x = (x, y, z) and $x = r \cos \theta \sin \varphi$, $y = r \sin \theta \sin \varphi$, $z = r \cos \varphi \theta$, such that θ and φ are angles in spherical coordinates.

- (b) Assume spherical symmetry of initial conditions (f = f(r), g = g(r)) and the solution u = u(r, t), where r = |x|, and write the initial / boundary value problem for the radially symmetric function v(r, t) = ru(r, t).
- (c) Find the solution v(r, t) and hence the solution u(r, t).

Ouestion 4

2 · marks

Green's Functions.

(a) Consider Poisson's equation on the tilted half plane

So if a equation on the linear hard parts
$$\Delta u = f(x); \qquad x \in \Omega \equiv \{x \in \mathbb{R}^2 | x_1 + x_2 > 0\}, \qquad (1)$$

$$u(x) = g(x); \qquad x \in \partial \Omega$$

Write the associated Green's function $G_H(x, y)$ using the method of images, and verify its corresponding boundary value problem.

(b) Consider Poisson's equation on the tilted half disc:

$$\Delta u = f(x); \qquad x \in \Omega \equiv \{x \in \mathbb{R}^2 | x_1 + x_2 > 0 \& |x| < 1\}, \qquad (2)$$

$$u(x) = 0; \qquad x \in \partial \Omega$$

Determine the associated Green's function $G_S(x, y)$ and show it satisfies the needed boundary conditions. Then, write the solution to Eq. (2) in terms of this Green's function, and show it satisfies u(x) = 0 on $x \in \partial \Omega$.