Mansoura University		2 nd Year Production
Faculty of Engineering		1 st Term – 28 December, 2013
Prod. And Mech. Design Dept.	Machine Design Final Exam	Full Marks: 100, Time: 3 Hours

- Solve all Questions. All dimensions are in mm.
- Assume reasonable values for any missing data.

Figure (1) shows a Motor which drives Pulley P1 at 1500 rpm, and transmits power through a Flat Belt to Pulley P2 which is mounted on a Shaft that carries Gear G1 which meshes with Gear G2. Gear G3 is mounted together with Gear G2 on Shaft Q, and transmits power to Machine Z through Gear G4 which is subjected to a Torque T4=475 N.m. Assuming no losses and neglecting the weights of elements, find:

- 1. Torque at Gear G1 (T1) and Motor Power (P) in Horse Power.
- 2. Design details of the Flat Belt.
- 3. Diameter of Shaft Q that carries Gears G2 and G3.

Question2:(20 Marks)

A thin walled cylindrical pressure vessel has a mean diameter D=1000, length L=2000, and thickness (t), and contains a fluid of pressure P=1.6 KPa. An elements on the wall of the vessel as shown in Figure (2), is subjected a shear stress τ_{xy} =30 MPa. If the allowable (maximum) shear stress (τ_{max}) for the vessel must not to exceed 50 MPa, find:

- 1. The vessel thickness (t).
- 2. Maximum normal stress on the element (σ_{max}).
- 3. The planes at which (τ/σ) =max, and find its values of τ and σ .
- 4. The planes at which (σ/τ) =max, and find its values of τ and σ .

$$\tau_{\text{max}} = (((\sigma_x - \sigma_y)/2)^2 + \tau_{xy}^2)^{(0.5)}$$

$$\sigma_{\text{max}} = (\sigma_x + \sigma_y)/2) + (((\sigma_x - \sigma_y)/2)^2 + \tau_{xy}^2)^{(0.5)}$$

Figure (2)

Question3:(15 Marks)

Figure (3) shows a Cast Iron Flange Fixed Coupling that transmits 15kW from A to B at 900rpm. Design the following with neat sketches:

- Diameter of the steel shaft.
- Flange coupling.
- 4 steel bolts.
- · Square steel key.

	Steel	Cast Iron
τ_{all}	40MPa	8MPa

Allowable σ_{bearing}= 80MPa

Figure (3)

Question 4:(15 Marks)

Figure (4) shows a bracket fixed to a steel structure by 4 steel bolts of equal size, and carries a load of P=5kN, determine:

- The resultant force on each bolt.
- The size of the bolts.

Given that for bolt material, $\tau_{all} = 50 MPa$. Use L2=50, L1=400, and e=200.

Question5:(25 Marks)

It is required to lift a load W=10kN through a height of 500 using a screw jack shown in Figure (5). Design all possible details of this Jack, given that:

Allowable Bearing Stresses of Bronze are:

With Steel	With Cast Iron	
18MPa	35MPa	

End of the Exam

Good Luck
Dr. Ahmed Galal

Figure (4)

Exam is in three pages