Cisão Euro

Menofia University Faculty of Engineering Shebien El-kom First Semester Examination

Academic Year: 2015-2016



Department: Mech. Power Eng.

Year: 2nd

Subject: Eng. Mathematics Time Allowed: 3 hours Date: 13 / 1 / 2016

Allowed Tables and Charts: None

Answer all the following questions: [100 Marks]

| Q.1 | (A) Let $\phi(x,y,z) = xe^{y+z}$ , and $\overline{F} = grad\phi$ , find $div\overline{F}$ ,                                                        | [50] |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------|------|
| ~   | curl $\overline{F}$                                                                                                                                |      |
|     | (B) Evaluate using Green's theorem in the plane for                                                                                                |      |
| 9   | $\int_{C} (3x^2 - 8y^2) dx + (4y - 6xy) dy$ where C is the area                                                                                    |      |
|     | bounded by $\mathbf{x} = 0$ , $\mathbf{y} = 0$ , and $\mathbf{x} + \mathbf{y} = 2$ .                                                               |      |
|     | (C) Show that $\nabla \phi$ is a vector perpendicular to the surface $\phi(x,y,z)=c$ ,                                                             |      |
|     | where c is constant.                                                                                                                               |      |
|     | (D) If $r = x\overline{i} + y\overline{j} + z\overline{k}$ a) Find $\nabla \phi$ if $\phi = \frac{1}{r}$ , b) Find $\nabla \phi$ if $\phi = \ln r$ |      |
|     | .(E) Show by Green's theorem that the area bounded by a simple                                                                                     |      |
|     | closed curve C is given by $\frac{1}{2} \oint_c x dy - y dx$ , then compute the                                                                    |      |
|     | area of ellipse whose parametric equations are                                                                                                     |      |
|     | $(x = a\cos\theta, y = b\sin\theta)$                                                                                                               |      |
|     | (H) Determine whether the vector field                                                                                                             |      |
| -   | $\overline{F} = \cosh x \overline{i} + 6yz^2 \overline{j} + 6y^2 z$ is conservative. If it is                                                      |      |
|     | conservative, find its scalar potential. Then, Evaluate $\int_{C}^{\overline{F}.d\overline{r}}$                                                    |      |
|     | along any simple closed curve. Also, Evaluate $\int_{C} \overline{F} \cdot d\overline{r}$                                                          |      |
|     | between the points (0, 0, 0) and (2, 4, 2) along the curve given by the parametric equations                                                       |      |
|     | $x = t^2 + 1$ , $y = 3t^2 + \sqrt{t}$ , $z = t^3 + t$ .                                                                                            |      |
|     |                                                                                                                                                    |      |

| Q2. | (A) Evaluate $\oint (x^2y\cos x + 2xy\sin x - y^2e^x)dx + (x^2\sin x - 2ye^x)dy$                                                                                        | [50] |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
|     | around the hypocycloid $x^{2/3} + y^{2/3} = a^{2/3}$                                                                                                                    |      |
|     | (B) Verify Stokes' theorem for                                                                                                                                          |      |
|     | $\overline{F} = \left(x^3 + \frac{yz^2}{2}\right)\overline{i} + \left(y^2 + \frac{xz^2}{2}\right)\overline{j} + xyz\overline{k}$                                        |      |
|     | where S is the surface of the cube $x = 0$ , $y = 0$ , $z = 0$ , $x = 3$ , $y = 3$ , $z = 3$ above the x-y plane.                                                       |      |
|     | (C) Use divergence theorem to evaluate the surface integral                                                                                                             |      |
|     | $\iint_{S} \overline{A} \cdot \overline{n}  dS \text{ where } \overline{A} = x^{2} \overline{i} + y^{2} \overline{j} + z^{2} \overline{k} \text{ and the surface S is}$ |      |
|     | the surface of the cube $0 \le x \le 1$ , $0 \le y \le 1$ , $0 \le z \le 1$ .                                                                                           |      |
|     | (D) Solve the following L.P.P. using Simplex method                                                                                                                     |      |
|     | $Maximize Z(\$) = 3x_1 + 5x_2$                                                                                                                                          |      |
|     | Subject to                                                                                                                                                              |      |
|     | $5x_1 + 5x_2 \le 25$                                                                                                                                                    |      |
|     | $9x_1 + 13x_2 \ge 117$                                                                                                                                                  |      |
|     | $x_1, x_2 \ge 0$                                                                                                                                                        |      |
|     | Then check your answer using <b>graphical method</b> .                                                                                                                  |      |
|     | (E) Evaluate 1) i) $\Gamma(-5/2)$ ii) $\int_{0}^{1} \frac{dx}{\sqrt{-\ln x}}$                                                                                           |      |
|     | $ \lim_{\mathbf{iii}} \int_{0}^{\pi/2} \sin^{6} \theta d\theta \qquad \lim_{\mathbf{iv}} \int_{0}^{\pi/2} \sqrt{\tan \theta} d\theta $                                  |      |
|     | 2) Prove that $\beta(m,n) = 2 \int_{0}^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$                                                                             |      |

 $\mathbf{ii}) \int_{0}^{2\pi} \sin^8 \theta d\, \theta = \frac{35\pi}{64}$ 

With my best wishes

Dr. osama N.Saleh