NUTRITIONAL PREFERENCE OF EGYPTIAN WEASEL, MUSTELA NIVALIS SUPBLAMATA HEMPRICH & EHRENBERG IN RELATION TO ITS CONTROL UNDER LABORATORY CONDITIONS #### Y. A. E. Eisa Plant Protection Research Institute, Agricultural Research Center, Dokki, Giza, Egypt (Received : Apr., 9, 2015) ABSTRACT: The food preference of weasels, Mustela nivalis supplamata under non-choice and free choice methods was investigated under laboratory conditions. To study food preference of weasels under non-choice method, beef liver, house sparrow, quail, doves, fish meat, chicken liver, chicken meat and gandofli meats were used as food materials. The obtained data recorded that weasels at mean body weight of 210, 200, 195, 180, 175, 200, 170 and 160 g, the average weight of consumed food were 133, 100, 119, 80, 100, 99 and 33.5 g / day, respectively with acceptance rate of 1.0, 0.75, 0.90, 0.89, 0.60, 0.75, 0.74 and 0.25, respectively. As for food preference under free choice material, weasels with 180 g body weight consumed 130, 120, 128, 93.5, 105.5 and 33.0 g / day as beef liver, quail, doves, house sparrow, poultry chick and gandofli, respectively, with acceptance rate of 1.0, 0.92, 0.98, 0.71, 0.80 and 0.25, respectively. As for food preference under free choice material, weasels with 177 g body weight consumed 136, 118, 98, 37, 85 and 66 g / day as beef liver, chicken liver, chicken meat, chicken eggs, fish meat and corned beef, respectively, with acceptance rate of 1, 0.86, 0.72, 0.62 and 0.42, respectively. Beef liver and fish meat poisoned baits with 0.5, 1.0, and 1.5 % zink phosphide killed 40 to 100 % of weasels under laboratory conditions , the best results was recorded with beef liver poisoned bait 1.0% giving 100 % mortality. Application of compressed date baits poisoned with 0.5, 1.0, 1.5, 2.0 % zinc phosphide against weasels under laboratory conditions recorded 30, 60, 90, 100 % mortality percentages, respectively. Key words: Weasel, food preference, zinc phosphide, Mustela nivalis, poisoned baits. #### INTRODUCTION In the natural environment, weasels play an important role in the food chains, whereas depression the small harmful mammals and birds by predation. The parlance between animals is continually when number of predators remain lower the prey. When man-intrusion to environments weasels' number increased due to food and shelter abundance and weasels problem began to appear. The increased number of weasels is accomplished by serious problems to man as it feed on domestic bird and carrying serious human and animal diseases and they are abhorred by most people. The Egyptian weasel lives in the same places as humans, including cities and villages. It is mostly nocturnal. The Egyptian weasel, together with its more common cousin, the least weasel (Mustela nivalis), is considered to be the smallest carnivore in the world Hoath (2009). So similar are the Egyptian weasel and the least weasel that it was only recently, in 1992, that the two were determined to be separate species Dejong (1992). The female Egyptian weasel can have up to three litters a year. She gives birth to four to nine kits at a time, McDonald and Hoffmann (2008). Today, weasels are observed in many habitats, Jedrzejewski et al., (1993) and Eissa (2001). So agreed efforts has been exerted by the Egyptian Government to control weasels. In Egypt, Osborn and Helmy (1980) observed and recorded weasels, Mustela nivalis supblamata in Cairo, Alexandria Fayoum Governorates. Weasels are active at any time of day or night, and intersperse periods of activity with a rest period, The Environment Agency. (1998). They feed mainly on small rodents, rabbits, birds and eggs, killing prey with a bite to the neck, Animal diversity web (July 2002). Their small size enables them to enter the tunnels of mice and voles whilst hunting, and they often take over the nests of their prey, lining their dens with fur from prey during cold weather, The Mammal Society, Weasel Fact Sheet. (July 2002). Anticoagulant rodenticides are widely used to control rodent populations but they also pose a risk of secondary poisoning in non-target predators. Zinc phosphide is an acute rodenticide having numerous agricultural applications. Studies anticoagulant rodenticide exposure of nontarget species have mainly reported on frequency of occurrence. Pesticides as zinc phosphide, aldicarb and some of natural poisonous plant were used to weasels control. Abdel-Rahman et al. reported that concentration 10, 20, and 30 % aldicarb gave high reduction population density of weasels. This study was conducted to throw some light on food palatability under free choice and nonchoice method and effect of preferred foods as a poisoned bait zinc phosphide against Mustela nivalis supblamata under laboratory conditions ### MATERIALS AND METHODS Weasels: The weasels, *Mustela nivalis supblamata* Hemprich & Ehrenberg were trapped from El-Khalafawy region, Cairo Governorate by using mist net Fig. (1) which was set at the sunset in weasels going place. In laboratory, collected weasels were weighted and sexed. Animals were retained individually in wire mesh hold cages. Laboratory experiments were conducted using special unit as shown in Fig. (1). The unit consists of modified the hanging standard laboratory rat cages that described by United States Department of Agriculture (USDA, Marsh, 1972). The cage is about 45.1 cm long, 17.8 cm high and 17.8 cm wide. During acclination period, animals had access to water and chicken meat for 2 weeks. #### Food preference: Non- choice feeding method: The relative preference of some foods and live small animal species as house sparrow, quail, doves, fish meat, chicken liver, chicken meat and gandofli in relation to beef liver were evaluated under no choice method. Weasels from each sex were individually caged. Ten individuals of each of the live animals or 10 g of chicken meat and 10 g of fish meat were individually caged with one weasel in the laboratory, with a supply source of water. #### Choice feeding method: Ten tested food materials were chosen and divided into two groups and beef liver used as standard as follows: Group (1) Beef liver, Quail, Doves, house sparrow, chick poultry, and gandofli. Group (2) Beef liver, Chicken liver, chicken meat, chicken eggs Fish meat and carned beef. Five animals from both weasels were used for each group. Five individuals of a each live animals and 70 g from the other tested materials were introduced to each individually caged weasel. The consumed amount from each food (g) as well as its relative acceptance rate to beef liver was estimated. Acceptance rates of different foods were estimated according the formula of (Buckle and Smith, 1994): | Accentance rate - | average consumed of tested food (g) | |-------------------|---------------------------------------| | Acceptance rate = | average consumed of standard food (g) | Fig. (1): Weasels collection cage #### **Toxic and baits:** Technical grade zinc phosphide (94 % active ingredient) was obtained from Kafr Elzayat (KZ) pesticide company, Egypt. Different baits were prepared where 0.5, 1.0, 1.5 and 2.0 g of zinc phosphide were weighed and mixed with 100 g of compressed dates , then douched good and balled (each ball 25 g). The second type of bait is prepared from the preferred beef liver and fish meat which were tested previously. The beef liver was slices (4 x 3 x 3 cm) and left in laboratory conditions up to have surface (3 hours); 0.5, 1.0 and 1.5 g of zinc phosphide mixed with 10 g of wheat flour . #### **Toxicity test:** Four groups (each 10 weasel) were used per each concentration of poisoned compressed date baits (0.5, 1.0, 1.5, 2.0, zinc phosphide). Five slides of baits (each 20 g) were put in cage. After one day the poisoned baits were removed and replaced by fresh diet and water. The consumed bait was calculated and dead animals were recorded during three days of treatment. Another experiment used the preferred beef liver and fish meat, as bait 0.5, 1.0, and 1.5 % zinc phosphide. Groups of 30 animals each were used. Each group was divided into three sub-groups of 10 animals per each concentration. The poisoned bait was removed, recorded during three days of treatment. The obtained data was statistically analyzed using analysis variance of at 5 % (ANOVA) probability. The measurements were separated using Duncan's Multiple Range Test (DMRT) through CoStat software program (Version 6.400) 1998-2008. #### RESULTS AND DISCUSSION Food palatability of weasels under non-choice and free choice methods The food palatability of weasels, *Mustela nivalis supblamata* under non-choice and under free choice methods was evaluated. To evaluate the acceptance rate of house sparrow, quail, doves, fish meat, chicken liver, chicken meat and gandofli comparing with beef liver under non choice method, each food was introduced to weasels singly. Results in Table (1) indicated that weasels had mean body weight of 210, 200, 195, 180, 175, 200, 170 and 160 (g), the average daily consumed food were 133, 100, 119, 80, 100, 99 and 33.5 g from Beef liver, house sparrow, Quail, Doves, Chicken liver, Chicken meat, and Gandofli, respectively and the relative consumption of introduced food were, 1.0, 0.75, 0.90, 0.89, 0.60, 0.75, 0.74 and 0.25, respectively as mentioned before. Table (1): Food preference of weasels, M. nivalis supplamata under non-choice option | Table (1)11 dea proteit | mod or modeolo, mir m | vans supplamata anac | mon onoide option | |-------------------------|----------------------------|----------------------------|-------------------| | Food material | Mean of body
weight (g) | Average daily consumed (g) | Acceptance rate | | Beef liver | 210 | 133 a | 1.0 a | | House sparrow meat | 200 | 100 b | 0.75 c | | Quail meat | 195 | 120 a | 0.90 b | | Doves meat | 180 | 119 a | 0.89 b | | Fish meat | 175 | 80 c | 0.60 d | | Chicken liver | 200 | 100 b | 0.75 c | | Chicken meat | 170 | 99 b | 0.74 c | | Gandofli meat | 160 | 33.5 d | 0.25 e | | LSD 5% | | 18.3 | 0.096 | Means in each column followed by the same letter (s) are not significantly different at 5% level. Statistical analysis of the obtained data in Table (1) indicated that there were significant differences in the daily weight of consumed food between beef liver, Quail, Doves and all other foods. As for the acceptance rate , there were significant differences between Beef liver and all other tested foods . The highest acceptance rate was recorded with Beef liver 1.0 followed by Quail 0.9 Doves 0.89 , while the least rate was recorded with Gandofli 0.25. To evaluate the acceptance rate of chicken liver, chicken meat , chicken eggs, fish meat, and corned beef comparing with beef liver under free choice method, all tested food types were introduced to weasels. Results in Table (2) indicated that weasels with 180 g as mean of body weight , the daily consumed food were 130, 120, 128, 93.5, 105.5 and 33 g from beef liver , quail, doves , house sparrow, poultry chick , and gandofli , respectively and the relative acceptance of introduced food were, 1.0, 0.92, 0.98, 0.71, 0.80, and 0.25, respectively as mentioned before. Furthermore, to evaluate the acceptance rate of quail, doves, house sparrow poultry chick and gandofli comparing with beef liver under free choice method, all tested food types were introduced to weasels. Results in Table (2) indicated that weasels with 177 g as mean of body weight , the daily consumed food were 136, 118.8, 98, 37, 85 and 66 g from beef liver , chicken liver, chicken meat , chicken eggs, fish meat, and corned beef , respectively and the relative acceptance of introduced food were, 1.0, 0.86, 0.72, 0.27, 0.62, and 0.48, respectively as mentioned before. Statistical analysis of the obtained data in Table (2) indicated that there were significant differences in the daily weight of consumed food between beef liver, quail, doves and all other introduced foods. Table (2): Food preference of weasels *Mustela nivalis supblamata* to free choice food materials | | • | | | | |-------------------------------|--|--|--|--| | Average daily consumed (g) | Acceptance rate | | | | | Mean of body weight (g) 180.0 | | | | | | 130 ab | 1.0 a | | | | | 120 c | 0.92 b | | | | | 128 b | 0.98 a | | | | | 93.5 e | 0.71 e | | | | | 105.5 d | 0.80 d | | | | | 33 h | 0.25 h | | | | | Mean of body weight (g) 177.0 | | | | | | Beef liver 136.0 a 1.0 a | | | | | | 118.8 c | 0.86 c | | | | | 98.0 de | 0.72 e | | | | | 37.0 h | 0.27 h | | | | | 85.0 f | 0.62 f | | | | | 66.0 g | 0.48 g | | | | | 7.85 | 0.12 | | | | | | consumed (g) ean of body weight (g) 180. 130 ab 120 c 128 b 93.5 e 105.5 d 33 h ean of body weight (g) 177. 136.0 a 118.8 c 98.0 de 37.0 h 85.0 f 66.0 g | | | | Means in each column followed by the same letter (s) are not significantly different at 5% level. As for the acceptance rate , there were significant differences between Beef liver and doves and all other tested foods . The highest acceptance rate was recorded with Beef liver and doves 1.0 & 0.98 followed by Quail 0.92 , while the least rate was recorded with chicken eggs and Gandofli 0.27 & 0.25. ## Toxicity of zinc phosphide baits against weasels: The four tested compressed date poisoned baits of zinc phosphide (0.5, 1.0, 1.5 and 2 %) caused different mortality percentages in weasels. Results in Table (3) showed that the concentration of 0.5 % killed 30 % of treated animals; the mean consumption bait was 11.5 g, while 60 % from treated animals diet after consumption 10.0 g of poisoned bait of 0.1 % other concentration: 1.5 and 2 % caused the same mortality percentage (90 & 100.0 %); the concentration; bait was 7.7 and 7.3 g to each concentration respectively. In vision to enhancing the mortality percentage with low concentration of zinc phoshide by increasing the lethal dose intoke of the preferred beef live and fish meat were used as bait compared with compressed date. Data in Table (3) show that liver meat poisoned baits with 0.5, 1 and 1.5 % zinc phosphide caused 70, 100 and 100 % mortality and the bait consumption were 17.5, 15.3 and 15.5, while fish meat poisoned baits of the same concentrations caused 40, 70 and 90 % mortality of treated animals. Results in Table (4) revealed that when the mean body weight of weasel was 160, 140, 155 and 150 g and the concentrations of compressed date poisoned with zinc phosphide (0.5, 1.0, 1.5 and 2.0 %) the consumed bait was 11.5, 10.9, 7.7 and 7.3 g and the mortality percentages were 30, 60, 90 and 100 %, respectively. The mortality percentages of weasels were the highest at beef liver poisoned baits compared with fish meat and compressed date , this may be due to fish water content which attributed to loss of phosphide gas from zinc phosphide and reduced the toxic effect. By using the biological methods, Rezk (2000) found that the poisoned bait of zinc phosphide 2.5 % lost 20 % and 50 % of its effectiveness when exposed to 80 % RH for 2 and 7 days, respectively. Elmeros et al. (2011) examine the occurrence and concentrations of five anticoagulant rodenticides in liver tissue from 61 stoats (Mustela erminea) and 69 weasels (Mustela nivalis) from Denmark, and found that anticoagulant rodenticides were detected in 97% of stoats and 95% of weasels. They found that chemical rodent control in results in an extensive exposure of non-target species and may adversely affect the fitness of some stoats and weasels. It could be concluded that the use of liver meat poisoned with 1.0 % of zinc phosphide successively controlled the Egyptian weasels. Table (3): Effect of beef liver and fish meat baits poisoned with zinc phosphide against weasels under laboratory conditions | | Zinc phosphide | | | | | | |------------|----------------------|----------------|----------------------|----------------|----------------------|----------------| | Food | 0.5 % | | 1.0 % | | 1.5 % | | | со | consumed
bait (g) | mortality
% | consumed
bait (g) | mortality
% | consumed
bait (g) | mortality
% | | Beef liver | 17.5 | 70.0 | 15.3 | 100 | 15.0 | 100 | | Fish meat | 20.4 | 40.0 | 20.4 | 70 | 18.7 | 90 | Table (4): Toxicity of compressed date baits poisoned with zinc phosphide against weasels under laboratory conditions | wedgels drider laboratory conditions | | | | | | |--------------------------------------|------------------------------|----------------------|-------------|--|--| | Mean of body weight (g) | Zinc phosphide concentration | Consumed bait
(g) | Mortality % | | | | 160 | 0.5 % | 11.5 | 30 | | | | 140 | 1.0 % | 10.9 | 60 | | | | 155 | 1.5 % | 7.7 | 90 | | | | 150 | 2.0 % | 7.3 | 100 | | | #### REFERENCES - Abdel-Rahman, A., M. H. Alimi and M. A. Affifi (1999). Preference of the Egyptian weasels *Mustela nivalis supblamata* to food items. Egypt J.Appl. Sci., 14 (7): 602-610. - Animal diversity web. (July 2002). http://animaldiversity.ummz.umich.edu/a ccounts/mustela/m._nivalis\$narrative.ht ml - Buckle A. P. and R. H. Smith (1994). Rodent pests and their control. Cab. Inter. UK. CAB International 161-181. - CoStat version 6.400 Copyright © 1998-2008 . Cohort Software. 798 Lighthouse Ave. PMB 320 , Monterey, CA, 93940, USA. - Dejong, C.G.V. (1992). A morphometric analysis of cranial variation in Holarctic weasels (*Mustela nivalis*). Zeitschrift für Saugetierkunde, 57(2): 77-93. - Eissa, Y.A (2001). Ecological, biological studies on weasels *Mustela nivalis supblamata*. M. Sc.Thesis, Fac. Agric. Al-Azhar Univ.,111 p. - Elmeros, M., T. K. Christensen and P. Lassen (2011). Concentrations of anticoagulant rodenticides in stoats *Mustela erminea* and weasels Mustela nivalis from Denmark. Sci Total Environ. 2011 May 15; 409(12): 2373-2378. - Hoath, R. (2009). The Weasel. The American University in Cairo Biology Club, Cairo. Available at: - http://bioclub.wordpress.com/2009/10/09/the-weasel/. - Jedrzejewski, W., B. Jedrezejewska and M. Brezezinskl (1993). Winter habitat selection and feeding habits of polcate *Mustela putorius* in the Bialowieza National Park. Zeitschn fur saeugetier Kunde, 58 (2): 75-83. - Marsh, R. E. (1972). Recent developments in Tracking Dusts. Proc. Rod. Cpntrol, Conf. New York, State Department of Health. J.E. Bookd ed., Glens Falla, N.Y. 18-20 October, 60-62. - McDonald, R. and M. Hoffmann (2008). Mustela subpalmata. In: IUCN 2008. IUCN Red List of Threatened Species. Retrieved 21 March 2009. Database entry includes a brief justification of why this species is of least concern. - Osborn, D. J. and I. Helmy (1980). The contemporary land mammals of Egypt. Field Museum of Natural History. New Series, U.S.A., (5): 395-410. - Rezk, A. M. (2000). Comparative studied zinc phosphide (Rodenticide). M. Sc. Thesis, Fac. Agric. Al-Azhar Univ., 97 p. - The Environment Agency (1998). Species and Habitats Handbook: Look-up chart of species and their legal status. The Environment Agency, Bristol. - The Mammal Society. Weasel Fact Sheet. (July 2002): http://www.abdn.ac.uk/mammal/weasel. shtml ## التفضيل الغذائى للعرس المصرى Mustela nivalis supblamata وعلاقتة بالمكافحة تحت الظروف المعملية #### يونس احمد السيد عيسى معهد بحوث وقاية النباتات - مركز البحوث الزراعية - الدقى - جيزة - مصر #### الملخص العربى تم دراسة التفضيل الغذائى للعرس المصرى mon-choice method هو التغذية على كبد البقر ثم وجد ان افضل غذاء مفضل لها تحت الظروف الاجبارية non-choice method هو التغذية على كبد البقر ثم لحم السمان ثم لحم الحصفور وكبد الدجاج ثم لحم الدجاج يليه لحم السمك واخيرا لحم الجندوفلى حيث كان معدل الاستهلاك اليومي له ١٦٠، ١٢٠، ١١٠، ١١٠، ١٠٠، ١٩٥، ١٠٠، ٢٠٠، جم عندما كان متوسط وزن الجسم ٢١٠، ١٩٥، ١٨٠، ١٠٠، ٢٠٠، ٢٠٠، ١٧٠، ١٧٠، ١١٠ جم على الترتيب وحينما تم تقديم الاغذية المختلفة بطريقة الاختيار الغذائي الحر Pree choice method بمتوسط وزن مقداره ١٨٠، ١٣٠، جم على الترتيب اما جم فكان اعلى متوسط استهلاك يومي مسجل كان لكبد البقر بمتوسط مقداره ١٣٠، ١٣٦، جم على الترتيب اما اقل معدل تغذية كان عند تقديم لحم الجندوفلي بمتوسط وزن مقداره ١٨٠ جم حيث استهلك الحيوان متوسط يومي مقداره ٣٣٠ جم فقط. أعطى طعم كبد البقر المسمم ب ١٠٠ ٪ من فوسفيد الزنك موت ١٠٠ ٪ من العرس بينما اعطى طعم لحم السمك ٧٠ ٪ موت . أعطى طعم البلح المجفف المسمم ب ٠٠٠ ، ١٠٠ ، ٢٠٠ ٪ من فوسفيد الزنك موت ٣٠ ، ٦٠ ، ٩٠ ، ٩٠ . ٩٠ ٪ من العرس تحت الظروف المعملية. يوصى البحث بكفاءة إستخدام طعم كبد البقر المسمم ب ١٠٠ ٪ من فوسفيد الزنك في مكافحة حيوان العرس المصرى.