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ABSTRACT

The vertical transition occurred in open channel when the bed goes up or down
suddenly or gradually. Such problem could be solved using the specific energy equati:on.
Since the specific energy is measured with respect to channel bed as the datum, a rise or
a fal] in the bed of the channel causes a decrease or an increase in specific energy.

The authors presents in this paper new equations for the solution of the vertical

transition problems for rectangular open channels.

The specific energy in this paper takes a dimensionless form to make the solution of
the problem easier. By using the new dimensionless equation, the solution -of the two
types of vertical transition problems (rise or fall) would be available if the flow through
channel subcritical or supercritical. Thus, the new dimensionless equation became very
simple in use. Also the new derived equations were used to solve the problem if the rise
in bed was bigger than the critical rise (maximum rise in bed).

From the above it was evident that, if the height of rise in channel bed (hump) was
increased further the maximum value and the specific energy held constant with the
hump and the discharge would be decreased until the given specific energy was equal to
the minimum specific energy corresponding to the new discharge, as the energy could be

increased without outside affect. Also, the upstream water depth would be changed to a2

new value called )7, .
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"The vertical transition problem can’ be easﬂy solved by the speblﬁc energy equation.
Bakhmettef [1], in 1912, was the first who introduced the concept of specific energy.
Specific energy in a channel is defined as the energy per unite weight of water at any
section of a channel measured with respect to the:¢channel bottom as a datum, thus

E:d.cos@_—haV.l e O R (1)
o S22 s
in which E is the specific energy; d is the normal water depth; @ is the bed slope; &
the energy coefficient; ¥ is the mean velocity; and g is the acceleration due to gravity.
Or, for a channel of small slope & = 0.0,thus cosd =1.0 and assuming « =1.0
5 .
E=y+ 5%
in which y is the water depth.
Since. 0 = AV Equation (1) may be written as:
o
. 2g4’
m which Q is the dlscharge and 4 is water cross- sec‘nonal area.
When the depth of flow is plotted agamst the specific energy for a given channel section
and discharge, a specific-energy curve is obtained Fig. (1). -
The curve shows that, for a given specific energy, there are two possible water depths,
the low stage yjand the high stage y;. The low stage is called supercritical flow. The high
stage is called subcritical flow. The two depths are called alternative water depths. If the
discharge changes, the specific energy will be changed accordingly. It is means that for
every discharge there is a special curve.

E=y+

’ g

Vertlcal Transition Problems

When the bed elevation of an open channel changes along the length so a vertical
transition is provided as a link between the original and the new-channel. Vertical
transitions may be a rise in bed or a falling sudden drop or gradual transition a long a
short distance or a long one. The solution of the problem using the specific energy
equation takes the following shape: (assuming, the channel is smooth and rigid i.e.

h=0.0)

E =E,+AZ
0t 2 :
Yt =t 9 T HAL
2 A ' ZgA

in which £, is the specific energy at the upstream of the transition; E,is the specific
energy at the downstream of the transition; AZ is the rise or falling in bed; y, is the
water depth at the upstream of the transition; y, is the water depth at the downstream of
the transition; 4, is the water cross-sectional at the upstream section of the transition; and
A, is the water cross-section at the downstream of the transition.

So, for a rectangular section: |
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2 2
yl + _....._Q.._z. = y2 + _Q....._Z +
2g(by,) 2g{by,)
in which b is the section breadth.
' 2
E =y, + Q2 > LAZ
2gb*y,
E, 2gb2E,y;_,2 E,

or:

2
Putting dimensionless parameters {, = 2—?;@7 , AZ,=AZ[E,, and y, =y,/E, the
g0 Ly

above equation takes the form:

2
I=y,+ Q‘z-iAZ,

y* -
in which Q, is a dimensionless discharge; y, is the dimensionless water depth; and- AZ, is
the dimensionless rising or falling in a channel bed.

In the above equation the plus sign means a rise in bed (Fig. (2)) while the minus one
means a falling in a channel bed.
The following are some problems that usually involved in the hydraulic de51gn for

the vertical transitions.
1. To estimate the size of rising just requIred to make the flow crltlcal (whlch lead

to a maximum rise case);
2. To predict the flow behavior after the transition when the transition is smaller

than that of the maximum,;

3. To predict the flow behavior after the transition as well as upstream the transition
when the size of the rise is larger than that of the maximum size; and

4. To predict the flow behavior after the transition when the transition is due to a

fall in the channel bed.
Type I
Case of Rise in Bed (Hump):
Q 2
1=y, +55 +AZ,
Ya

v =3 +0+AZy}
0 =y" -y} -2z

O, = y.A1—y, —AZ, P SR (3)

Equation (3) plots as shown in the Fig. (3).

If the value of the rise in bed (hump) is increased to a certain value AZ, ., then the
flow at downstream will be critical. To get the condition of maximum rise in bed
differentiates the dlscharge to the depth and equate to the zero as: : :

dQ _ -
- ()( \/__-)(—1 )+\/1 y.—8Z, =00
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RS dz, =0.0 where AZ

dy,
AZ, . =1.0-15y,, .ccconenn Ceenees et .----(4)

in which AZ,,. is the dimensionless critical size of rising in bed (maxmmm rise in

*max.

bed); and y,, is the dimensionless critical water depth.
Substituting Equation (4) into Equation (3) it can be obtained:
Q.. = yufT=y.. —1+ 1.5y,

=039, e [OOSR (5)
=320, e s e (6)

in which Q,, is the dimensionless critical discharge.
Equations 4 and 6 can be plotted as shown in Figs. (4) and (5).

Demoustration of Proposed Method ,
As stated before there are three cases. of rise in bed accordmg to the amount of rise

inbed AZ.,:

The known variables are always O, b, and y; and the unknown variables will be as stated
in the problem. According to the known variables of the problem, firstly determine the

crltlcal rising in a channel bed AZ, .
Comparing between dimensionless rising in bed AZ, and the cr1t1ca1 dimensionless
:risinginbed AZ,,.
o IfAZ =AZ
o IfAZ { AZ,, itwillbecasell "~
o IfAZ,) AZ, it will be case IIL.

max.

it will be case I,

*MAx.

Case :( AZ, = AZ, .. )
The known variables are O, b, and y; and the unknown variable is AZ, = AZ, .
2
To solve this problem compute the upstream specific energy £, =y, + 5 f - and the
g2 ),

% Then get y,, =3/20,
\ 2 b2 £ =) yxc - « *
Finally compute the unknown critical rise in bed in dimensionless shape:

AZ, o =1.0-15y,,
By using the values of 0, and AZ . got AZ, and the critical downstream Vae -

due to the fact that the flow is critical, from the following equations:
AZ /E,

value of dimensionless parameter O, =

mex. *max

Y = y"Zc'EI
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in which y,, is the dimensionless critical water depth at the downstream of the

transition.

Case II:( AZ, ( AZ,,,,) o o 2

The known variables are 0, b, y;, and AZ and the unknown is y;.,
Compute the maximum rise in bed using the same steps as in case L.

ChECk that AZ < AZ*max
By using the values of O, and AZ, get y,, from Equation (3), where y.,( ».; ( y"“

the flow is supercritical and y, ) y,, } ¥.. if the flow is subcritical.

From any of the two states of flow the downstream water depth can be calculate as'

following:
Y2 =Yg X E
in which y,, is the dimensionless water depth at the downstream of the transition.

Case IIl:( AZ,) AZ, )

If the height of the rise in the channel bed (hump) is increased further the ﬁllaximum"

AZ, . > then in order to pass the same discharge the specific energy will have to be

increased. In this case for the approaching subcritical flow tward the hump.required
increase in the specific energy which will be provided by the rise in the depth of flow at
section 1. For supercritical flow approaching the hump the depth of flow at section 1 will
be reduced, thereby providing the required increased in the specific energy.

. E; = EZ(, + AZ(> AZI'I]ED()

. 2 2
y‘; _.__‘Q___ = y2 _Q__ +AZ
2g(by]) 23@’)’9)

in which: | and E are the affected water depth of flow and spemﬁc energy,

respectively, on the upstream and E, is the specific energy at downstream critical

section. However, if the specific energy held constant with the hump of height more than
the above indicated limiting value (critical rise in bed), the discharge is decreased until
the given specific energy is equal to the minimum specific energy corresponding to the
new discharge, as known that the energy cannot be increased without outside affecting.

Known are @, b, y;, and AZ and the unknown which are v, é and ;1 .
Compute the maximum rise in bed using the same steps as in the case I.
Check that AZ, ) AZ, ... and then computes the following items as follows:

=§(1.0-Az*)

The new discharge is then:

é = \,'Zgszls(@:)z

The new upstream water depth is calculated from the following equations:

0. = yuyl-y, —AZ,
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., . . y,l = y*.l%(‘ jEl ‘_:..2:- .

Type 1l
Case of having a depression in Bed (Sump):
The known variables are O, b, y;, and AZ and the unknown variable is y,.

To solve this problem computes thc followmg pa:rameters E ,Q,, , AZ‘ , Y and y,,c
Getthe y,, from the following equation: T

. Qn-.,:ytZ\fl—y*zﬁ'AZ*, L . il

We take y,, { v, if the flow is supercritical.
Or we take y,, ) V.. ifthe flow is subcritical.
From any of the two states of flow the downstream water depth can be calculated as
following:

; .3-'_\‘ _‘.-'-(.- N

V2 :'y¢2-E|

CONCLUSIONS '
1-When the bed of a channel has & hump or a'depression it can be easily ‘solved as a

vertical transition problem by the propOsed new dimensionless equations mentioned in
the present'research paper.
2-The rising in.bed problem can be solved as a vertlcal transition problem w1th three

* cases -according to the value of rising in bed AZ, = AZ, . , AZ,( AZ,, . and
AZ, Y AZ, . . If the height of rise in bed (hump) is increased further the maximum
AZ and the specific energy held constant with the hump the discharge will be

*max,

decreased until the given specific energy is equal to the minimum specific energy
corresponding to the new discharge, because the energy cannot be increased without

outside affecting. Also the upstream water depth will be changed to a new value j, .
3-The present research paper presented new easy dimensionless equations, which can be
used to solve, the falling in bed problem.
4-The proposed method presents new dimensionless discharge- depth rclat;onslnps for
‘rectangular section that facilitates a direct solution for all vertical transnlonal
problems.
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NOTATIONS

The following symbols are used in this p‘:ép"er;\

A = the water cross-sectional area; -
4 = the water cross-sectional at the upstfeam of the transition; .
A, = the water cross-section at the downstream of the transition;
b = the section breadth;, '
d = the normal water depth;
E = the specific energy; = .
E, = the specific energy at the'upstream of the transition;
| = the affected water depth at the upstream of the {ransition;
E, = the specific energy at the downstream of the transition;
E;, = the specific energy at the downstream critical section;
g = the acceleration due to gravity,
o) = the discharge;
0 = new discharge upstream the transition;
0, = dimensionless discharge; ,
0. = new dimensionless discharge at the upstream of the transition;
vV = the main velocity;
¥ = the water depth.
30 = the water depth at the upstream of the transition;
» = the affected water depth at the upstream of the transitjbn;
)7, = new water depth at the upstream of the transition;
}_z.: = new dimensionless water depth at the upstream of the transition;
¥, = the water depth at the downstream of the transition; |
Y = dimensionless water depth;
Ve = dimensionless critical depth of {low;
a = the energy coefficient; ‘
6 = the bed slope;
AZ = the rise or falling in bed;
AZ, = dimensionless rising or falling in bed; and
AZ = maximum dimensionless rise in bed.

FINEX
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