Menofia University

Faculty of Engineering Shebien El-kom

Basic Engineering Science Dep.

Post Graduate Examination, 2019-2020

Date of Exam: 09 / 08 / 2020

Subject: Introduction to

Ordinary Differential Equations Code: BES 506

Time Allowed: 3hrs Total Marks: 100 Marks

Answer all the following questions

الامتحان في ح

[10 Marks A 5 Marks and B 5 Marks] Question 1

Find the particular solution of the first order first degree ordinary differential (A) equation.

$$\frac{dy}{dx} = y^2 + 1, \qquad y(1) = 0$$

Find the general solution of the first order first degree ordinary differential (B) equation.

$$\frac{dy}{dx} = \frac{x^2 - 2y^2}{2xy}$$

[10 Marks A 5 Marks and B 5 Marks]

Find the general solution of the first order first degree ordinary differential (A) equation.

$$(4 x^3 y - 15 x^2 - y) dx + (x^4 + 3 y^2 - x) dy = 0$$

(B) Explain all cases of the integrating factor to reduce the first order first degree ordinary differential equation to an exact equation. Solve this equation as an example

$$(y + x y^2)dx - x dy = 0$$

Question 3 [10 Marks A 5 Marks and B 5 Marks]

Find the general solution of the first order first degree ordinary differential equation

$$(x-2)\frac{dy}{dx} + y = x^2 - 4$$

Find the general solution of the first order first degree ordinary differential (B) equation.

$$\frac{dy}{dx} + \left(\frac{2}{x}\right)y = x^2y^3$$

[35 Marks (1) 8 Marks, (2) 9 Marks,

(3) 9 Marks and (4) 9 Marks]

Find the total solution of the following non-homogeneous second order ordinary differential equation by undetermined coefficients method.

$$(1) \frac{d^2y}{dx^2} + 5 \frac{dy}{dx} + 6 y = x^2$$

(2)
$$\frac{d^2y}{dx^2} + 9 y = e^{2x} + \sin(3x)$$

(3)
$$\frac{d^2y}{dx^2} + 3\frac{dy}{dx} + 2y = \cos(x) + 10e^{-x}$$
 (4) $\frac{d^2y}{dx^2} - 9y = xe^x + \sin(2x)$

(4)
$$\frac{d^2y}{dx^2} - 9 y = x e^x + \sin(2x)$$

[15 Marks A 8 Marks and B 7 Marks] Question 5

Find the total solution of the following non-homogenous differential equation by the Laplace transform method.

(1)
$$y^{//} - y = e^{2t}$$
, $y(0) = 0$, and $y^{/}(0) = 1$

$$(2)\frac{dx}{dt} + 4x = \cos(t), x(0) = 0$$

Question 6 [20 Marks A 10 Marks and B 10 Marks]

(A) Find the solution of the non-homogeneous system of ordinary differential equations.

$$\frac{dx}{dt} = 6x + y + 6t \quad and \quad \frac{dy}{dt} = 4x + 3y - 10t + 4$$

(B) Solve the second order differential equation in series form by recurrence relation method.

$$y^{//} - 4y = 0$$