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1 - SUMMARY:

Prediction of the dynamic behaviour of a machine tool
structure enables the designer to study the different alter-
native designs and make the necessary corrections. 1In this
way the overall dynamic characteristics of the machine could
be improved early before the production stage. For such pur-
poses, experimentation on scaled models and/or the use of the
mathematical models are recommended,

In this work, the dynamic behaviour of the structure
of a horizontal knee-type milling machine is studied. The stu-
dy includes the prediction of the structure behaviour using
mathematical models hased on the classical beam theory. More-
over experimental determination of the structure behaviour is
also carried cut on perspex models, Two quarter~scale perspex
models are constructed and tested. The theoretical and exper-
imental results are compared and justified,

The presented study shows the suitability of both techni~
ques for predicting and improving the structure characteristics,
and hence the considered machine.
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2 - JINTRODUCTION:

The model technique is considered as one of the most
acceptable and reliable techniques that could be used for
predicting the static and dynamic behaviour of machine tool
structures. It has been applied with considerable success to
almost all types of machine tool structures. Moreover it has
been adopted by many firms as an almost standard technique
preceding the final design stage. The work published by E.
Bodart and other authors presents typical examples of the app-
lication of this technique‘l-sj.

In this work, the model technique is used to investigate
the dynamic behaviour of the structure of the horizontal knee-
type milling machine, The behaviour of the considered structure
is also theoretically predicted. 1In this way the reliability of
the considered mathematical technigue could be evaluated.

3 - DERIVATION OF THE MATHEMATICAL MODEL:

The main dimensions and main parts of the considered mill-
ing machine as well as the derivation of the mathematical model
and the dynamic behaviour governing equations were presented by
the author in a separate paper“). The theoretical results of
the basic model of the machine, Fig. (1), and the second modif-
ication, Pig. (2), will be included in this work for the purpose
of comparison. These are given in tables (1) and {2}.

4 - THE TEST ARRARGEMENT:

The elements of the test arrangement is shown diagramatic-
ally in Fig. (3). It is composed of the test model, the exciter
and the measuring system, A photograph of the test arrangement
is shown in Pig. (4).

The models were made from prespex, having the same dimen-
sions as those shown in Figs (1) and (2)}. In the course of the
experiments, they are securely bolted to the heavy table of
a radial drilling machine as shown in Figs (3) and (4).
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Provisions for measurements were provided by attaching
the three prespex strips 1, 2 and 3 shown in Figs {5} and (6).
The strips were of 3 mm thickness and 15 mm width. On each
strip equal pitched holes were drilled and tapped. In this way
the acceleration pick-up could be firmly fixed to the model at

the selected measuring points as shown in Fig. (6}.

A knocking pin was fixed at the top of the model column
using the upper hole of the back strip as shown in Figs (5) and
{6). The construction of this pin is shown in Pig. (7}, it in-
sures the rotation of the ball and in the same time its ability
to slide back to eliminate the effect of excessive engagement
which may take place between the knocking pin and the exciter.

To conduct the necessary tests, a mechanical exciter was
designed and constructed, making usé of the facilities provided
by the stepless drive mechanism of the spindle of a radial dril-
ling machine. 1In this way the drilling spindle and its driving
mechanism constituted two main elements of the designed mechanical
exciter. The third main element was the knocking disc attach-
ement, Figs (8) and (9). A diagrammatic sketch of the designed
mechanical exciter and photograph picture are shown in Figs {10}
and (11).

The exciting frequency was measured with the aid of the
r.p.m. irdicating counter of the radial drilling machine, which
is graduated from 0 to 2000 r.p.m. Accordingly, the exiting Ereg-
uency will be 10/60 of the indicated r.p.m. The reading of this
counter was calibrated using a speedometer and the calibration

curve is shown in Fig. (12).

The deflection at each measuring point was determined using
the measuring system shown in Pigs (3). The system consisted of
an acceleration pik-up, and amplifier and a digital displacement

meter.
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5 - THE EXPERIMENTAL RESULTS:

The experimentally determined results are presented in
Figs (13) to (18). For the basic model, the deflections of
the different preselected measuring points on the column, table
and overarm are plotted against the exciting fregquency as shown
in Figs {13} to (15). 1In the same way the deflections of the
similar measuring peoints on the mair parts of the second model
are plotted in Figs. (16} to (18).

Examining Figs (13) to (15), it could be seen that the
column, table and overarm of the basic model exhibit a common
resonance peak at approximatelly 210 C/S5. The exciting freq-
uency (210 C/$) giving this common resonance peak will be con-
sidered as the first natural freguency of that model.

Applying the same procedure on Fig, {16) to (18) the com-
mon resonance peak is found approximately at 190 C/S, which
gives the first natural freguency of that model.

6 - DI N ] :

Fig. {19) shows a comparison betweer the predicted and
measured results. The comparison shows a distinct deviation
from the theoretically predicted values, for both modeform and
natural frequency, However, this deviation could be justified
by the following sources of inaccuracy inherent to the experim-

ental work:

1. The theoretical work was based on the fact that each of
the model main parts forms an integral unit whilst in
the expilerimental work each unit was composed by joint-
ing several plates of perspex.

2., In the theoretical work, the column is assumed rigidly
connected to the base which is considered as infinitly
rigi¢ member. In the experimental the base is bolted to
the work table of the machine which gives the base a def-
inite and not infinite rigidity.
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The theoretically predicted deflections are those of
the centrelines of the different main parts of the
model, whilst the experimentally measured deflections are
those of points located on the upper surfaces of each

part.

Due to the lack of measuring instruments,a simple meas-
uring circuit was utilized, In the course of experim-
ental work the accelerometer was shifted from one meas-
uring point to another, instead of simultaneocus measuring
and recording the deflections of the different measuring

points.

~ IHE MAIN CONCLUSIONS:

From the presented results and discussion, the following

could be concluded:-

1.

The classical beam theory is a suitable mathematical tec-
hnigue that can be used for predicting and improving the
dynamic behaviour of machine tool structures.

The structure behaviour ¢ould be improved by altering its
configuration, when its mass, main dimensions and wall
thickness are kept constant.
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Deflection ¢«

65
60] ———— The deflection at first point.— —
s5{ ——-— The deflection at secord point.
50| —-~--— The deflection at third point—
15 ———The deflection at fourth point-
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83 90
Fig (.14 ) Deflections of the different points of the table
. (Basic rnodel)
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Deflection M
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Fig (. 16) Deflection of the different points of the Column
(Second modification)
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DYNAMIC BEHAVIOUR OF MILLING
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