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Abstract: In this paper, using the q-Salagean difference operator, we obtain coefficient 

estimates, distortion theorems, some radii for functions belonging to the class 

  (       ) of uniformly starlike and convex functions. Further we determine partial 

sums results for the functions in this class 

keywords: Analytic function, q-Salagean type difference, uniformly functions, distortion, partial 

sums.  
1.Introduction

Let   be the class of analytic univalent 

functions of the form: 
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For  ( )   , Salagean [15] ( see also [2]) 

defined the operator    by 
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For       the Jackson's q-derivative of 

 ( )    is given by [12] (see also [1, 3, 7, 10, 

16, 17])  
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Recently for  ( )   , Govindaraj and 

Sivasubramanian [11] (also see [13]) defined 

the q-Salagean difference operator by 
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Specializing                we have  
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and Srivastava [6] with j=1 ); 

(  )   (       )    ( )   ( Seoudy and Aouf 

[17] ). 

 

2  COEFFICIENT ESTIMATES 

Unless indicated, we assume that      
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 This last expression is bounded above by 

(   ) if  
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Theorem 2. A function  ( )    (       ) if 
and only if   
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Proof.  In view of Theorem 1, we need to prove 
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Letting z→1⁻ along the real axis, we obtain 

(2.2). 

Corollary 1.  Let  ( )    (       ). Then  
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3.GROWTH AND DISTORTION 

THEOREMS 
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This completes the proof. 

Corollary 2.  Let  ( )    (       ). Then 
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The sharpness attained for f(z) given by (3.3). 

Proof.  Taking i=0 in Theorem 3, we have the 

result. 
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taking i=1 in Theorem 3, we have the corollary. 
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which implies that  ( )    (       )  Thus 

we have the theorem. 

Corollary 5. The class   (       ) is closed 

under convex linear combination. 
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So by Theorem 1,  ( )    (       ). 

Conversely, assume that  ( )    (       ). 
Then 

       
).2(

)1(1)()1(

1





 kz

kkk
a

k

qq

n

q

k





 
(4.11) 

Setting 

    
, - 

 [, - (   ) (   )] [   (, -   )]

   
    (   )    

                                         (4.12) 

and   







2

1
)13.4(,1

k
k



 we see that  ( ) can be expressed in the form 

(4.8). This completes the proof.  

Corollary 6. The extreme points of 
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Theorem 5. 

5  SOME RADII OF THE CLASS 
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6.PARTIAL SUMS 

For  ( )     its partial sums is given by 
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To prove the result (6.10), define  ( ) by 
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Remark. 

 (i)  Putting      and letting    ⁻ in 

Theorems 7, 8 and 9, we get results for the 

class  (       )  

 (ii)  Putting           in Theorems 7, 8 

and 9, we get the results for the class   ( )  
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