## MANSOURA JOURNAL OF Mathematics

# UNIFORMLY STARLIKE AND CONVEX CLASS ASSOCIATED WITH q-SALAGEAN DIFFERENCE OPERATOR 

M. K. Aouf, A. O. Mostafa and F. Y. Al-Quhali<br>Department of Mathematics, Faculty of Science, Mansoura University, Mansoura 35516, Egypt.



Abstract: In this paper, using the q-Salagean difference operator, we obtain coefficient estimates, distortion theorems, some radii for functions belonging to the class $T_{q}(n, \gamma, \alpha, \beta)$ of uniformly starlike and convex functions. Further we determine partial sums results for the functions in this class
keywords: Analytic function, q-Salagean type difference, uniformly functions, distortion, partial sums.

## 1.Introduction

Let $S$ be the class of analytic univalent functions of the form:
$f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}, \mathrm{z} \in \mathrm{U}=\{\mathrm{z}: \mathrm{z} \in \mathrm{C}:|\mathrm{z}|<1\}$.
For $f(z) \in S$, Salagean [15] ( see also [2])
defined the operator $D^{\mathrm{n}}$ by

$$
\begin{align*}
& D^{0} f(z)=f(z),(1.2) \\
& D^{1} f(z)=D f(z)=z f^{\prime}(z)  \tag{1.3}\\
& \text { and } \\
& \begin{aligned}
D^{\mathrm{n}} f(z) & =D\left(D^{\mathrm{n}-1} f(z)\right) \\
& =z+\sum_{k=2}^{\infty} k^{n} a_{k} z^{k} \quad\left(\mathrm{n} \in \mathbb{N}_{0}=\right.
\end{aligned}
\end{align*}
$$

$\mathbb{N} \cup\{0\}, \mathbb{N}=\{1,2, \ldots\})$.
For $0<q<1$ the Jackson's $q$-derivative of $f(z) \in S$ is given by [12] (see also [1, 3, 7, 10, $16,17])$

$$
D_{q} f(z)= \begin{cases}\frac{f(z)-f(q z)}{(1-q) z} & \text { for } z \neq 0  \tag{1.5}\\ f^{\prime}(0) & \text { for } z=0\end{cases}
$$

and $D_{q}^{2} f(z)=D_{q}\left(D_{q} f(z)\right)$. From (1.5) we have

$$
\begin{equation*}
D_{q} f(z)=1+\sum_{k=2}^{\infty}[k]_{q} a_{k} z^{k-1} \tag{1.6}
\end{equation*}
$$

where

$$
\begin{equation*}
[k]_{q}=\frac{1-q^{k}}{1-q} \quad(0<q<1) \tag{1.7}
\end{equation*}
$$

Recently for $f(z) \in S$, Govindaraj and Sivasubramanian [11] (also see [13]) defined the q-Salagean difference operator by

$$
\begin{align*}
& D_{q}^{0} f(z)=f(z)  \tag{1.8}\\
& D_{q}^{1} f(z)  \tag{1.9}\\
& \vdots \\
& \begin{aligned}
D_{q}^{n} f(z) & =z D_{q} f(z) \\
& \left.=z+D_{q}^{n-1} f(z)\right) \\
& \sum_{k=2}^{\infty}[k]_{q}^{n} a_{k} z^{k}
\end{aligned} .
\end{align*}
$$

$q<1, z \in U)$.
We observe that
$\lim _{q \rightarrow 1^{-}} D_{q}^{n} f(z)=D^{n} f(z)$, $\lim _{q \rightarrow 1^{-}} D_{q} f(z)=D^{n} f(z)$ is defined by (1.4).
Using the operator $D_{q}^{n}$ and for $0 \leq \alpha<1,0 \leq$ $\gamma \leq 1, \beta \geq 0$ and $n \in \mathbb{N}_{0}$, let $S_{q}(n, \gamma, \alpha, \beta)$ be the class consisting of functions $f \in S$ satisfying
$\operatorname{Re}\left\{\frac{(1-\gamma) z D_{q}\left(D_{q}^{n} f(z)\right)+\gamma D_{q}\left(z D_{q}\left(D_{q}^{n} f(z)\right)\right)}{(1-\gamma) D_{q}^{n} f(z)+\gamma D_{q}\left(D_{q}^{n} f(z)\right)}-\alpha\right\}$
$\geq \beta \left\lvert\, \frac{(1-\gamma) z D_{q}\left(D_{q}^{n} f(z)\right)+\gamma D_{q}\left(z D_{q}\left(D_{q}^{n} f(z)\right)\right)}{(1-\gamma) D_{q}^{n} f(z)+\gamma D_{q}\left(D_{q}^{n} f(z)\right)}-1\right.$.
(1.11)

Let
$T=\left\{f \in S: f(z)=z-\sum_{k=2}^{\infty} a_{k} z^{k}, a_{k} \geq 0\right\}$,
and
$T_{q}(n, \gamma, \alpha, \beta)=S_{q}(n, \gamma, \alpha, \beta) \cap T$.
Specializing $q, n, \gamma, \alpha$ and $\beta$, we have
lim
(i) ${ }^{q \rightarrow 1^{-}} T_{q}(n, \gamma, \alpha, 0)=P(1, \gamma, \alpha, n) \quad$ (Aouf and Srivastava [6] with $\mathrm{j}=1$ );
(ii) $T_{q}(0,0, \alpha, 0)=C_{q}(\alpha) \quad$ (Seoudy and Aouf [17] ).

## 2 COEFFICIENT ESTIMATES

Unless indicated, we assume that $-1 \leq \alpha<$ $1, \beta \geq 0,0 \leq \gamma \leq 1,0<q<1, n \in \mathbb{N}_{0}, f(z) \in$ $S$ and $z \in U$.
Theorem 1. A function $f(z) \in S_{q}(n, \gamma, \alpha, \beta)$ if
$\sum_{k=2}^{\infty}[k]_{q}^{n}\left[[k]_{q}(1+\beta)-(\alpha+\beta)\right]\left[1+\gamma\left([k]_{l}-1\right)\right]\left|a_{k}\right| \leq 1-\alpha$.

Proof. It suffices to show that
$\beta\left|\frac{(1-\gamma) z D_{q}\left(D_{q}^{n} f(z)\right)+\gamma D_{q}\left(z D_{q}\left(D_{q}^{n} f(z)\right)\right)}{(1-\gamma) D_{q}^{n} f(z)+\gamma D_{q}\left(D_{q}^{n} f(z)\right)}-1\right|$
$-\operatorname{Re}\left\{\frac{(1-\gamma) z D_{q}\left(D_{q}^{n} f(z)\right)+\gamma D_{q}\left(z D_{q}\left(D_{q}^{n} f(z)\right)\right)}{(1-\gamma) D_{q}^{n} f(z)+\gamma D_{q}\left(D_{q}^{n} f(z)\right)}-1\right\}$
$\leq 1-\alpha$.
We have
$\beta\left|\frac{(1-\gamma) z \boldsymbol{D}_{q}\left(\boldsymbol{D}_{q}^{n} f(z)\right)+\gamma \boldsymbol{D}_{q}\left(z \boldsymbol{D}_{q}\left(\boldsymbol{D}_{q}^{n} f(z)\right)\right)}{(1-\gamma) D_{q}^{n} f(z)+\gamma D_{q}\left(\boldsymbol{D}_{q}^{n} f(z)\right)}-1\right|$
$-\operatorname{Re}\left\{\frac{(1-\gamma) z D_{q}\left(D_{q}^{n} f(z)\right)+\gamma D_{q}\left(z D_{q}\left(D_{q}^{n} f(z)\right)\right)}{(1-\gamma) D_{q}^{n} f(z)+\gamma D_{q}\left(D_{q}^{n} f(z)\right)}-1\right\}$
$\leq(1+\beta) \left\lvert\, \frac{(1-\gamma) z D_{q}\left(D_{q}^{n} f(z)\right)+\gamma D_{q}\left(z \boldsymbol{D}_{q}\left(\boldsymbol{D}_{q}^{n} f(z)\right)\right)}{(1-\gamma) D_{q}^{n} f(z)+\gamma D_{q}\left(D_{q}^{n} f(z)\right)}-1\right.$
$\leq \frac{(1+\beta) \sum_{k=2}^{\infty}[k]_{q}^{n}\left([k]_{l}-1\right)\left[1+\gamma\left([k]_{l}-1\right)\right] \boldsymbol{a}_{k} \mid}{1-\sum_{k=2}^{\infty}[k]_{q}^{n}\left[1+\gamma\left([k]_{q}-1\right)\right] \boldsymbol{a}_{k} \mid}$.
This last expression is bounded above by $(1-\alpha)$ if
$\left.\sum_{k=2}^{\infty}[k]_{q}^{n}\left[[k]_{q}(1+\beta)-(\alpha+\beta)\right] 1+\gamma\left([k]_{l}-1\right)\right] \boldsymbol{a}_{k} \mid \leq 1-\alpha$, and hence the proof is completed.

Theorem 2. A function $f(z) \in T_{q}(n, \gamma, \alpha, \beta)$ if and only if
$\left.\sum_{k=2}^{\infty}[k]_{q}^{n}\left[[k]_{t}(1+\beta)-(\alpha+\beta)\right] 1+\gamma\left([k]_{t}-1\right)\right]_{a_{k} \leq 1-\alpha .}$
(2.2)

Proof. In view of Theorem 1, we need to prove if $f(z) \in T_{q}(n, \gamma, \alpha, \beta)$ then (2.2) holds. If $f(z) \in T_{q}(n, \gamma, \alpha, \beta)$ and $z$ is real, then

$$
\begin{aligned}
& \frac{1-\sum_{k=2}^{\infty}[k]_{q}^{n}\left\{[k]_{q}\left[1+\gamma\left([k]_{q}-1\right)\right]\right\} a_{k} z^{k-1}}{1-\sum_{k=2}^{\infty}[k]_{q}^{n}\left[1+\gamma\left([k]_{q}-1\right)\right] a_{k} z^{k-1}}-\alpha \\
& \geq \beta\left|\frac{\sum_{k=2}^{\infty}[k]_{q}^{n}\left([k]_{q}-1\right)\left[1+\gamma\left([k]_{q}-1\right)\right] a_{k} z^{k-1}}{1-\sum_{k=2}^{\infty}[k]_{q}^{n}\left[1+\gamma\left([k]_{q}-1\right)\right] a_{k} z^{k-1}}\right|
\end{aligned}
$$

Letting $\mathrm{z} \rightarrow 1^{-}$along the real axis, we obtain (2.2).

Corollary 1. Let $f(z) \in T_{q}(n, \gamma, \alpha, \beta)$. Then $\boldsymbol{a}_{k} \leq \frac{1-\alpha}{[k]_{q}^{n}\left[[k]_{q}(1+\beta)-(\alpha+\beta)\right]\left[1+\gamma\left([k]_{q}-1\right)\right]}(k \geq 2)$. (2.3)

The result is sharp for
$\left.f(z)=z-\frac{1-\alpha}{\left.[k]_{q}^{n}[k]_{q}(1+\beta)-(\alpha+\beta)\right]\left[1+\gamma\left([k]_{l}-1\right)\right.}\right]^{k}(k \geq 2)$.

## 3.GROWTH AND DISTORTION

THEOREMS
Theorem 3. Let $f(z) \in T_{q}(n, \gamma, \alpha, \beta)$. Then for
$\mathbf{0} \leq \boldsymbol{i} \leq \boldsymbol{n}$
$\left|D_{q}^{i} f(z)\right|$
$\geq|z|-\frac{1-\alpha}{\left.[2]_{q}^{n-i}[2]_{l}(1+\beta)-(\alpha+\beta)\right]\left[1+\gamma\left([2]_{l}-1\right)\right.}|z|^{2}$,
and
$D_{q}^{\prime} f(z) \mid$
$\leq|z|+\frac{1-\alpha}{[2]_{q}^{n-i}[2]_{l}(1+\beta)-(\alpha+\beta)\left[1+\gamma\left([2]_{l}-1\right)\right.}|z|^{2} \cdot$
Equalities hold for
$\left.f(z)=z-\frac{1-\alpha}{[2]_{q}^{n}\left[[2]_{q}(1+\beta)-(\alpha+\beta)\left[1+\gamma\left([2]_{q}-1\right)\right.\right.}\right]^{2}$,
(3.3)
$D_{q}^{i} f(z)=z-\frac{1-\alpha}{[2]_{q}^{n-i}[2]_{q}(1+\beta)-(\alpha+\beta)\left[1+\gamma\left([2]_{q}-1\right)\right]^{z^{2}}(z \in U) .}$
Proof. Note that $f(z) \in T_{q}(n, \gamma, \alpha, \beta)$ if and only if $D_{q}^{i} f(z) \in T_{q}(n-i, \gamma, \alpha, \beta)$, where
$D_{q}^{i} f(z)=z-\sum_{k=2}^{\infty}[k]_{q}^{i} a_{k} z^{k}$.
Using Theorem 1, we have
$[2]_{q}^{n-i}[2]_{q}(1+\beta)-(\alpha+\beta)\left[1+\gamma\left([2]_{l}-1\right) \sum_{k=2}^{\infty}[k]_{q}^{i} a_{k}\right.$
$\left.\left.\leq \sum_{k=2}^{\infty}[k]_{q}^{n}[k]_{l}(1+\beta)-(\alpha+\beta)\right] 1+\gamma\left([k]_{l}-1\right)\right] a_{k}$
$\leq 1-\alpha$,
that is, that
$\sum_{k=2}^{\infty}[k]_{q}^{i} a_{k}$
$\leq \frac{1-\alpha}{\left.[2]_{q}^{n-i}[2]_{q}(1+\beta)-(\alpha+\beta)\right]\left[1+\gamma\left([2]_{l}-1\right)\right.}$.
It follows from (3.4) and (3.5) that
$\left|D_{q}^{i} f(z)\right| \geq|z|-|z|_{k=2}^{2 \infty}[k]_{q}^{i} a_{k}$

$$
\begin{equation*}
\geq|z|-\frac{1-\alpha}{[2]_{q}^{n-i}[2]_{i}(1+\beta)-(\alpha+\beta)\left[1+\gamma\left([2]_{q}-1\right)\right]^{\mid z}}|z|^{2} \tag{3.6}
\end{equation*}
$$

and
$\left|D_{q}^{i} f(z)\right| \leq|z|+|z|_{k=2}^{2} \sum_{k=2}^{\infty}[k]_{q}^{i} a_{k}$

$$
\begin{equation*}
\left.\left.\leq|z|+\frac{1-\alpha}{[2]_{q}^{n-i}[2]_{q}(1+\beta)-(\alpha+\beta)} \|_{1}+\gamma[2]_{-}-1\right)\right]^{z}| |^{2} . \tag{3.7}
\end{equation*}
$$

This completes the proof.
Corollary 2. Let $f(z) \in T_{q}(n, \gamma, \alpha, \beta)$. Then $|f(z)|$
$\left.\left.\geq|z|-\frac{1-\alpha}{[2]_{q}^{n}\left[[2]_{q}(1+\beta)-(\alpha+\beta)\right]\left[1+\gamma\left([2]_{i}-1\right)\right.} \right\rvert\,\right]\left.^{2}\right|^{2}$,
and
$|f(z)|$
$\leq|z|+\frac{1-\alpha}{[2]_{q}^{n}\left[[2]_{l}(1+\beta)-(\alpha+\beta)\right]\left[1+\gamma\left([2]_{l}-1\right)\right.}|z|^{2}$.
The sharpness attained for $\mathrm{f}(\mathrm{z})$ given by (3.3).

Proof. Taking i=0 in Theorem 3, we have the result.
Corollary 3. Let $f(z) \in T_{q}(n, \gamma, \alpha, \beta)$. Then $\left|D_{q}^{1} f(z)\right|$
$\left.\geq|z|-\frac{1-\alpha}{[2]_{q}^{n-1}\left[[2]_{Q}(1+\beta)-(\alpha+\beta)\right]\left[1+\gamma\left([2]_{Q}-1\right)\right.} \right\rvert\, z^{2}(z \in U)$,
and
$\left|D_{q}^{1} f(z)\right|$
$\leq|z|+\frac{1-\alpha}{\left.[2]_{q}^{n-1}[2]_{q}(1+\beta)-(\alpha+\beta)\right]\left[1+\gamma\left([2]_{Q}-1\right)\right.}|z|^{2}(z \in U)$.
The sharpness accurs for $\mathrm{f}(\mathrm{z})$ given by (3.3).
Proof. Note that $D_{q}^{1} f(z)=z D_{q} f(z)$. Hence taking $\mathrm{i}=1$ in Theorem 3, we have the corollary.
Corollary 4. Let $f(z) \in T_{q}(n, \gamma, \alpha, \beta)$. Then $U$ is mapped onto a domain that contains the disc
$|w|<\frac{\left.[2]_{q}^{n}[22]_{q}(1+\beta)-(\alpha+\beta)\right]\left[1+\gamma\left([2]_{q}-1\right)\right]-(1-\alpha)}{[2]_{q}^{n}\left[[2]_{q}(1+\beta)-(\alpha+\beta)\right]\left[1+\gamma\left([2]_{q}-1\right)\right]}$.

## 4 CLOSURE THEOREM

Let $f_{v}(z)$ be defined, for $v=1,2, \ldots, m$, by
$f_{v}(z)=\sum_{k=2}^{\infty} a_{k, v} z^{k} \quad\left(a_{k, v} \geq 0, z \in U\right)$.
Theorem 4. Let $f_{v}(z) \in T_{q}(n, \gamma, \alpha, \beta)$ for $v=1,2, \ldots, m$. Then
$g(z)=\sum_{v=1}^{m} \boldsymbol{C}_{v} f_{v}(z)$,
is also in the same class, where
$c_{v} \geq 0, \sum_{v=1}^{m} c_{v}=1$.
Proof. According to (4.2), we can write
$g(z)=z-\sum_{k=2}^{\infty}\left(\sum_{v=1}^{m} \boldsymbol{c}_{v} \boldsymbol{a}_{k, v}\right) z^{k}$.
Further, since $f_{v}(z) \in T_{q}(n, \gamma, \alpha, \beta)$, we get
$\sum_{k=2}^{\infty}[k]_{q}\left[[k]_{l}(1+\beta)-(\alpha+\beta)\right]\left[1+\gamma\left([k]_{Q}-1\right)\right] a_{k, v} \leq 1-\alpha$.
Hence
$\sum_{k=2}^{\infty}[k]_{q}^{n}[k]_{l}(1+\beta)-(\alpha+\beta)\left[1+\gamma\left([k]_{l}-1\right)\left(\sum_{v=1}^{m} c_{v} \boldsymbol{a}_{k, v}\right)\right.$
$=\sum_{v=1}^{m} c_{v}\left[\sum_{k=2}^{\infty}[k]_{q}^{n}\left[k_{i}\right]_{l}(1+\beta)-(\alpha+\beta)\left[1+\gamma\left([k]_{l}-1\right)\right] \boldsymbol{a}_{k, v}\right]$
$\leq\left(\sum_{v=1}^{m} c_{v}\right)(1-\alpha)=1-\alpha$,
which implies that $g(z) \in T_{q}(n, \gamma, \alpha, \beta)$. Thus we have the theorem.
Corollary 5. The class $T_{q}(n, \gamma, \alpha, \beta)$ is closed under convex linear combination.
Proof. Let $f_{v}(z) \in T_{q}(n, \gamma, \alpha, \beta)(v=1,2)$ and $g(z)=\mu f_{1}(z)+(1-\mu) f_{2}(z)(0 \leq \mu \leq 1)$, (4.6)

Then by, taking $m=2, \quad c_{1}=\mu$ and $c_{2}=$ $1-\mu$ in Theorem 4, we have $g(z) \in$ $T_{q}(n, \gamma, \alpha, \beta)$.
Theorem 5. Let $f_{1}(z)=z$ and
$f_{k}(z)=z-\frac{1-\alpha}{[k]_{q}^{n}\left[[k]_{l}(1+\beta)-(\alpha+\beta)\left[1+\gamma\left[[k]_{l}-1\right)\right]\right.} z^{k}(k \geq 2)$.
(4.7)

Then $f(z) \in T_{q}(n, \gamma, \alpha, \beta)$ if and only if

$$
\begin{equation*}
f(z)=\sum_{k=1}^{\infty} \mu_{k} f_{k}(z) \tag{4.8}
\end{equation*}
$$

where $\mu_{k} \geq 0(k \geq 1)$ and $\sum_{k=1}^{\infty} \mu_{k}=1$.
Proof. Suppose that

$$
\begin{align*}
& f(z)=\sum_{k=1}^{\infty} \mu_{k} f_{k}(z) \\
& \quad=z-\sum_{k=2}^{\infty} \overline{[k]_{q}^{n}\left[[k]_{t}[1+\beta)-(\alpha+\beta)\right][1+\gamma[[k],-1)]} \mu_{k} z^{k} . \\
& \text { (4.9) }  \tag{4.9}\\
& \text { Then it follows that } \\
& \left.\left.\left.\left.\sum_{k=2}^{\infty}[k]\right]_{l}^{[k]}\right]_{1+\beta)-(\alpha+\beta)}^{1-\alpha}[+\gamma[k]]_{1}-1\right)\right] \\
& =\sum_{k=2}^{\infty} \mu_{k}=1-\mu_{1} \leq 1 .
\end{align*}
$$

So by Theorem $1, f(z) \in T_{q}(n, \gamma, \alpha, \beta)$.
Conversely, assume that $f(z) \in T_{q}(n, \gamma, \alpha, \beta)$.
Then
$\left.a_{k} \leq \frac{1-\alpha}{[k]_{q}^{n}\left[[k]_{i}(1+\beta)-(\alpha+\beta)\left[1+\gamma\left[[k]_{l}-1\right)\right.\right.}\right]^{k}(k \geq 2)$.
(4.11)

Setting
$\frac{{ }_{[k]}^{n}{ }_{q}^{n}\left[[k]_{q}(1+\beta)-(\alpha+\beta)\right]\left[1+\gamma\left([k]_{q}-1\right)\right]}{1-\alpha} a_{k}(k \geq 2)$,
and
$\mu_{1}=1-\sum_{k=2}^{\infty} \mu_{k}$,
we see that $f(z)$ can be expressed in the form (4.8). This completes the proof.

Corollary 6. The extreme points of $T_{q}(n, \gamma, \alpha, \beta)$ are $f_{k}(z)(k \geq 1)$ given by Theorem 5 .

## 5 SOME RADII OF THE CLASS

 $T_{q}(n, \gamma, \alpha, \beta)$Theorem 6. Let $f(z) \in T_{q}(n, \gamma, \alpha, \beta)$. Then for $0 \leq \rho<1, k \geq 2, f(z)$ is
(i) close -to- convex of order $\rho$ in $|z|<r_{1}$,
$r_{1}=r_{1}(n, \gamma, \alpha, \beta, \rho)=$
$\inf _{k}\left[\frac{\left.(1-\rho)[k]_{q}^{n}[k] q(1+\beta)-(\alpha+\beta)\right]\left[1+\gamma\left([k]_{q}-1\right)\right]}{k(1-\alpha)}\right]^{\frac{1}{(k-1)}}$.
(ii) starlike of order $\rho$ in $|z|<r_{2}$,
$r_{-} 2=r_{-} 2(n, \gamma, \alpha, \beta, \rho)=\inf _{k}[\square(((1-$ $\rho)[k]_{\_} q^{\wedge} n\left[[k]_{-} q(1+\beta)-(\alpha+\beta)\right][1+$ $\gamma([k]-q-1)]) /((k-\rho)(1-\alpha)))]^{\wedge} \square(1 /$ $((k-1)))$.
(iii) convex of order $\rho$ in $|z|<r_{3}$,
$r_{3}=r_{3}(n, \gamma, \alpha, \beta, \rho)=$
$\inf _{k}\left[\frac{\left.(1-\rho)[k] \prod_{q}^{n}[k] q(1+\beta)-(\alpha+\beta)\right]\left[1+\gamma\left([k]_{q}-1\right)\right]}{k(k-\rho)((1-\alpha)}\right]^{\frac{1}{(k-1)}}$.
The results are sharp, for $f(z)$ given by (2.4).
Proof. To prove (i) we must show that

$$
\begin{aligned}
\left|f^{\prime}(z)-1\right| \leq & 1-\rho \quad \text { for }|z| \\
& <r_{1}(n, \gamma, \alpha, \beta, \rho) .
\end{aligned}
$$

From (1.2), we have
$\left|f^{\prime}(z)-1\right| \leq \sum_{k=2}^{\infty} k a_{k}|z|^{k-1}$.
Thus

$$
\left|f^{\prime}(z)-1\right| \leq 1-\rho,
$$

if
$\sum_{k=2}^{\infty}\left(\frac{k}{1-\rho}\right) a_{k}|z|^{k-1} \leq 1$.
But, by Theorem 1, (5.4) will be true if

$$
\begin{aligned}
& \left(\frac{k}{1-\rho}\right)|z|^{k-1} \\
& \leq \frac{\left.[k]_{q}^{n}[k]_{q}(1+\beta)-(\alpha+\beta)\right]\left[1+\gamma\left([k]_{q}-1\right)\right]}{1-\alpha},
\end{aligned}
$$

that is, if
$|z| \leq$
$\left[\frac{\left.(1-\rho)[k] q_{q}^{n}[k] q(1+\beta)-(\alpha+\beta)\right]\left[1+\gamma\left([k] q_{-1}\right)\right]}{k(1-\alpha)}\right]^{\frac{1}{(k-1)}}(k \geq 2)$,
which gives (5.1).
To prove (ii) and (iii) it is suffices to show that $\left|\frac{z f^{\prime}(z)}{f(z)}\right| \leq 1-\rho$ for $|z|<r_{2}$,
$\left|f^{\prime}(z)-1\right| \leq 1-\rho$ for $|z|<r_{3}$,
respectively, by using arguments as in proving (i).

## 6.PARTIAL SUMS

For $f(z) \in S$, its partial sums is given by

$$
f_{m}(z)=z+\sum_{k=2}^{m} \boldsymbol{a}_{k} z^{k} \quad(m \in \mathbb{N} \backslash\{1\}) .
$$

Silverman [19] determined sharp lower bounds for the real part of $\frac{f(z)}{f_{m}(z)}, \frac{f_{m}(z)}{f(z)}, \frac{f^{\prime}(z)}{f_{m}^{\prime}(z)}$ and $\frac{f_{m}^{\prime}(z)}{f^{\prime}(z)}$ for some subclasses of $S$.
We will follow the work of [19] and also the works cited in $[4,5,8,9,14,18]$ on partial sums of analytic functions, to obtain our results of this section.
We let
$\left.\Phi_{\mathrm{q}, \mathrm{k}}^{\mathrm{n}}=[k]_{q}\right]_{[ }^{n}[k]_{l}(1+\beta)-(\alpha+\beta)\left[1+\gamma\left([k]_{l}-1\right)\right]$.
Theorem 7. If $f$ satisfies (2.1), then
$\operatorname{Re}\left(\frac{f(z)}{f_{m}(z)}\right) \geq \frac{\Phi_{q, m+1}^{n}-1+\alpha}{\Phi_{q, m+1}^{n}} \quad(z \in U)$,
where
$\Phi_{q, k}^{n} \geq \begin{cases}1-\alpha, & \text { if } k=2,3, \ldots, m \\ \Phi_{q, m+1}^{n}, & \text { if } k \geq m+1 .\end{cases}$
The result (6.2) is sharp for
$f(z)=z+\frac{1-\alpha}{\Phi_{q, m+1}^{n}} z^{m+1}$.
Proof. Define $g(z)$ by

$$
\begin{aligned}
& \frac{1+g(z)}{1-g(z)}=\frac{\Phi_{q, m+1}^{n}}{1-\alpha}\left[\frac{f(z)}{f_{m}(z)}-\frac{\Phi_{q, m+1}^{n}-1+\alpha}{\left.\Phi_{q, m+1}^{n}\right]}=\right. \\
& \frac{\sum_{1+k=2}^{m} a_{k} z^{k-1}+\left(\frac{\Phi_{q, m+1}^{n}}{1-\alpha}\right) \sum_{k=m+1}^{\infty} a_{k} z^{k-1}}{\sum_{k=2}^{m} a_{k} z^{k-1}}
\end{aligned}
$$

It suffices to show that $|\mathrm{g}(\mathrm{z})| \leq 1$. Now from (6.5) we have

$$
\frac{\left(\frac{\Phi_{q, m+1}^{n}}{1-\alpha}\right) \sum_{k=m+1}^{\infty} a_{k} z^{k-1}}{=a_{k}^{n} z^{k-1}+\left(\frac{\Phi_{q, m+1}^{n}}{1-\alpha}\right) \sum_{k=m+1}^{\infty} a_{k} z^{k-1}}
$$

Hence we obtain

$$
|g(z)| \leq \frac{\left(\frac{\Phi_{q, m+1}^{n}}{1-\alpha}\right) \sum_{k=m+1}^{\infty}\left|a_{k}\right|}{2-2^{\sum_{k=2}^{m}\left|a_{k}\right|}-\left(\frac{\Phi_{q, m+1}^{n}}{1-\alpha}\right) \sum_{k=m+1}^{\infty}\left|a_{k}\right|}
$$

Now $|g(z)| \leq 1$ if and only if
$2\left(\frac{\Phi_{q, m+1}^{n}}{1-\alpha}\right) \sum_{k=m+1}^{\infty}\left|a_{k}\right| \leq 2-2^{\sum_{k=2}^{m}\left|a_{k}\right|}$.
or, equivalently,
$\sum_{k=2}^{m}\left|a_{k}\right|+\sum_{k=m+1}^{\infty} \frac{\Phi_{\mathrm{q}, \mathrm{m}}^{n}}{1-\alpha}\left|a_{k}\right| \leq 1$.
From (2.1), it is sufficient to show that
$\sum_{k=2}^{m}\left|a_{k}\right|+\sum_{k=m+1}^{\infty} \frac{\Phi_{\mathrm{q}, \mathrm{m}}^{n}}{1-\alpha}\left|a_{k}\right| \leq \sum_{k=2}^{\infty} \frac{\Phi_{\mathrm{q}, \mathrm{k}}^{n}}{1-\alpha}\left|a_{k}\right|$,
which is equivalent to
$\sum_{k=2}^{m}\left(\frac{\Phi_{q, \mathrm{k}}^{n}-1+\alpha}{1-\alpha}\right)\left|a_{k}\right|+\sum_{k=m+1}^{\infty}\left(\frac{\Phi_{q, \mathrm{k}}^{n}-\Phi_{\mathrm{q}, \mathrm{m}+1}^{n}}{1-\alpha}\right) a_{k \mid} \geq 0$.
(6.6)

For $z=r e^{i \pi / m}$ we have
$\frac{f(z)}{f_{m}(z)}=1+\frac{1-\alpha}{\Phi_{q, m+1}^{n}} z^{k} \rightarrow 1-\frac{1-\alpha}{\Phi_{q, m+1}^{n}}$
$=\frac{\Phi_{q, m+1}^{n}-1+\alpha}{\Phi_{q, m+1}^{n}} \quad$ where $r \rightarrow 1^{-}$,
Which shows that $f(z)$ given by (6.4) gives the sharpness.
Theorem 8. If $f(z)$ satisfies (2.1), then
$\operatorname{Re}\left(\frac{f_{m}(z)}{f(z)}\right) \geq \frac{\Phi_{q, m+1}^{n}}{\Phi_{q, m+1}^{n}+1-\alpha} \quad(z \in U)$,
where $\Phi_{q, m+1}^{n} \geq 1-\alpha$ and
$\Phi_{q, k}^{n} \geq \begin{cases}1-\alpha, & \text { if } k=2,3, \ldots, m \\ \Phi_{q, m+1}^{n}, & \text { if } k \geq m+1 .\end{cases}$
$f(z)$ given by (6.4) gives the sharpness.
Proof. The proof follows by defining

$$
\begin{array}{r}
\frac{1+g(z)}{1-g(z)}=\frac{\Phi_{q, m+1}^{n}+1-\alpha}{1-\alpha}\left[\frac{f_{m}(z)}{f(z)}\right. \\
\left.-\frac{\Phi_{q, m+1}^{n}}{\Phi_{q, m+1}^{n}+1-\alpha}\right]
\end{array}
$$

and much akin are to similar arguments in Theorem 7. So, we omit it.
Theorem 9. If $f$ satisfies (2.1), then
$\operatorname{Re}\left(\frac{f^{\prime}(z)}{f_{m}^{\prime}(z)}\right) \geq \frac{\Phi_{q, m+1}^{n}-(m+1)(1-\alpha)}{\Phi_{q, m+1}^{n}} \quad(z \in U)$
and
$\operatorname{Re}\left(\frac{f_{m}^{\prime}(z)}{f^{\prime}(z)}\right) \geq \frac{\Phi_{q, m+1}^{n}}{\Phi_{q, m+1}^{n}+(m+1)(1-\alpha)}$
Where

$$
\Phi_{q, m+1}^{n} \geq(m+1)(1-\alpha)_{\text {and }}
$$

$\Phi_{q, k}^{n} \geq \begin{cases}k(1-\alpha), & \text { if } k=2,3, \ldots, m \\ k\left(\frac{\Phi_{q, m+1}^{n}}{m+1},\right. & \text { if } k \geq m+1, m+2, \ldots,\end{cases}$
(6.11)
$f(z)$ given by (6.4) gives the sharpness.
Proof. We write
$\frac{1+g(z)}{1-g(z)}=$

$$
\frac{\Phi_{q, m+1}^{n}}{(m+1)(1-\alpha)}\left[\frac{f^{\prime}(z)}{f_{m}^{\prime}(z)}-\left(\frac{\Phi_{q, m+1}^{n}-(m+1)(1-\alpha)}{\Phi_{q, m+1}^{n}}\right)\right]
$$

where
$g(z)=$

$$
\frac{\left(\frac{\Phi_{q, m+1}^{n}}{(m+1)(1-\alpha)}\right) \sum_{k=m+1}^{\infty} k a_{k} z^{k-1}}{\sum_{2+2}^{m} k a_{k} z^{k-1}+\left(\frac{\Phi_{q, m+1}^{n}}{(m+1)(1-\alpha)}\right) \sum_{k=m+1}^{\infty} k a_{k} z^{k-1}}
$$

Now $|g(z)| \leq 1$ if and only if

$$
\sum_{k=2}^{m} k\left|a_{k}\right|+\left(\frac{\Phi_{\mathrm{q}, \mathrm{~m}+1}^{n}}{(\mathrm{~m}+1)(1-\alpha)}\right) \sum_{k=m+1}^{\infty} k\left|\boldsymbol{a}_{k}\right| \leq 1 .
$$

From (2.1), it is sufficient to show that
$\sum_{k=2}^{m} k\left|a_{k}\right|+\left(\frac{\Phi_{q, \mathrm{~m}+1}^{n}}{(\mathrm{~m}+1)(1-\alpha)}\right) \sum_{k=m+1}^{\infty} k\left|a_{k}\right| \leq \sum_{k=2}^{\infty} \frac{\Phi_{q, \mathrm{k}}^{n}}{1-\alpha}\left|a_{k}\right|$,
which is equivalent to

$$
\begin{aligned}
& \sum_{k=2}^{m}\left(\frac{\Phi_{\mathrm{q}, \mathrm{k}}^{n}-k(1+\alpha)}{1-\alpha}\right)\left|\boldsymbol{a}_{k}\right|+ \\
& \sum_{k=m+1}^{\infty}\left(\frac{(m+1) \Phi_{\mathrm{q}, \mathrm{k}}^{n}-k \Phi_{\mathrm{q}, \mathrm{~m}+1}^{n}}{(m+1)(1-\alpha)}\right)\left|\boldsymbol{a}_{k}\right| \geq 0 .
\end{aligned}
$$

To prove the result (6.10), define $g(z)$ by
$\frac{1+g(z)}{1-g(z)}=\frac{(m+1)(1-\alpha)+}{(m+1)(1-\alpha)} \Phi_{q, m+1}^{n}\left[\frac{f_{m}^{\prime}(z)}{f^{\prime}(z)}-\right.$
$\left.\left(\frac{\Phi_{q, m+1}^{n}}{(m+1)(1-\alpha)+} \Phi_{q, m+1}^{n}\right)\right]$,
and by similar arguments in first part we get desired result.

## Remark.

(i) Putting $\beta=0$ and letting $q \rightarrow 1^{-}$in Theorems 7, 8 and 9 , we get results for the class $P(1, \gamma, \alpha, n)$.
(ii) Putting $\gamma=n=\beta=0$ in Theorems 7, 8 and 9 , we get the results for the class $C_{q}(\alpha)$.

## References

1 M. H. Annby and Z. S. Mansour, q(2012).Fractional Calculas Equations, Lecture Noes in Math., 2056, SpringerVerlag Berlin Heidelberg,
2 M. K. Aouf, (2006), Neighborhoods of certain classes of analytic functions with negative coefficients, Internat. J. Math. Math. Sci., 2006 Article ID38258, 1-6.
3 M. K. Aouf, H. E. Darwish and G. S. Salagean, (2001), On a generalization of starlike functions with negative coefficients, Mathematica, Tome 43, 66 no. 1, 3-10.
4 M. K. Aouf, A. O. Mostafa, A. Y. Lashin and B. M. Munassar, (2014), Partial sums for a certain subclass of meromorphic univalent functions, Sarajevo J. Math., 10 (23) 161-169.

5 M. K. Aouf, A. Shamandy, A. O. Mostafa and E. A. Adwan, (2012), Partial sums of certain of analytic functions defined by

Dziok-Srivastava operator, Acta Univ. Apulensis, no. 30, 65-76.
6 M. K. Aouf and H. M. Srivastava, (1996),Some families of starlike functions with negative coefficients, J. Math. Anal. Appl., 203 Art. no. 0411, 762-790.
7 A. Aral, V. Gupta and R. P. Agarwal, (2013).Applications of $q$-Calculas in Operator Theory, Springer, New York, NY, USA,
8 B.A. Frasin, (2005), Partial sums of certain analytic and univalent functions, Acta Math. Acad. Paed. Nyir, 21 135-145.
9 B.A. Frasin and G. Murugusundaramoorthy, (2011), Partial sums of certain analytic and univalent functions, Mathematica, Tome 53 (75), no. 2, 131-142.
10 G. Gasper and M. Rahman, (1990).Basic hypergeometric series, Combridge Univ. Press, Cambrididge, U. K.,
11 M. Govindaraj and S. Sivasubramanian, (2017), On a class of analytic function related to conic domains involving $q$ calculus, Analysis Math., 43 (3) no. 5, 475-487.
12 F. H. Jackson, (1908), On q-functions and a certain difference operator, Transactions of the Royal Society of Edinburgh, 46 253-281.

13 G. Murugusundaramoorthy and K. Vijaya, (2017).Subclasses of bi-univalent functions defined by Salagean type qdifference operator, arXiv:1710.00143v 1 [ Math. CV] 30 Sep
14 T. Rosy, K. G. Subramanian and G. (2003), Murugusundaramoorthy, Neighborhoods and partial sums of starlike functions based on Ruscheweyeh derivatives, J. Ineq. Pure Appl. Math., 64 no. 4, Art., 4, 1-8.
15 G. Salagean, (1983), Subclasses of univalent functions, Lecture note in Math., Springer-Verlag, 1013 362-372.
16 T M. Seoudy and M. K. Aouf, (2016), Coefficient estimates of new classes of qconvex functions of complex order, J. Math. Ineq., 10 no. 1, 135-145.
17 T. M. Seoudy and M. K. Aouf, (2014), Convolution properties for certain classes of analytic functions defined by $q$ derivative operator, Abstract and Appl. Anal., 2014 1-7.
18 T. Sheil-Small. (1970), A note on partial sums of convex schlicht functions, Bull. London Math. Soc., 2 165-168.
19 H. Silverman, (1997), Partial sums of starlike and convex functions, J. Math. Appl., 209 221-227.

