Answer all the following questions:

Question No. 1

Show that for a simple homogenous, cylindrical extrusion the force acting upon the ram is given by: $F=Y A r \ln (A r / A e)$ where $A r$ is the area of the ram, $A e$ the area of the extruded bar and Y is yield stress for rigid-plastic material. In a twostage, extrusion process a 20 mm billet is first produced from a 10% reduction to its original area. There after, the billet is extruded to 18 mm . Given that the true stress-natural strain law for the annealed material is expressed by a Hollomon law: $\sigma=980 \varepsilon^{-.019}$, determine necessary for extrusion accounting for work Hardening.

Question No. 2

Estimate the roll force and torque required to roll a 300 mm wide, annealed sheet from 4 mm to 3.5 mm thick between two rolls each of radius 175 mm . How is the force altered when the original area had been attained by a previous reduction of 10% ? The plane strain, true stress versus natural strain curve is given by:

$$
\sigma=K\left(A+\varepsilon^{p}\right)^{n} \quad \text { or } \quad \frac{\sigma}{\sigma_{\theta}}=\left(1+\frac{\varepsilon^{p}}{\varepsilon_{\theta}}\right)^{n}
$$

In which $\sigma_{0}=2 \mathrm{k}=200 \mathrm{MPa}, \varepsilon_{0}=0.05$ and $\mathrm{n}=0.25$.

Question No. 3

The conditions when orthogonal machining a work hardening material are: rake angle $\alpha=10^{\circ}$, cutting speed $v=0.5 \mathrm{~m} / \mathrm{s}$ and depth of cut $b=0.2 \mathrm{~mm}$. Assume an experimental value $\phi=25^{\circ}$ for the shear angle with a rectangular shear zone of aspect ratio 10:1. Calculate the shear strain, the shear strain rate, and the inclinations of the resultant force R to the flank face and to the shear plane. Use the flow properties for the material given in the below figure.

Question No. 4

Apply this equation ($\tau=\frac{F \cos \lambda}{A / \cos \phi}=\sigma \cos \phi \cos \lambda$) to show when a tensile stress σ is applied to a single crystal, the critical resolved shear stress $\tau_{c r}$ is at a maximum for $\phi=\lambda=45^{\circ}$. Plot the variation in $\tau_{c r} / \sigma$ when the slip plane is inclined at various angles to the stress axis.

Question No. 5

An 800 mm long steel strut has a thin-walled, elliptical cross-section shown in Fig. The mean lengths of the major and minor axes are 80 and 30 mm respectively and the wall thickness is 3 mm . At its end fixings, Fig. 12.4a shows that the strut is free to rotate about a pin aligned with its y-axis but it is prevented from rotating about its \mathbf{x}-axis by the rigid walls shown. Compare the allowable compressive plastic loads according to the Engesser, parabolic and Rankine-Gordon formula, using a safety factor of 1.5 . For steel take $\sigma_{0}=300 \mathrm{MPa}, \sigma_{u}=450 \mathrm{MPa}$, $E=210 \mathrm{GPa}$ and $\mathrm{n}=1 / 3$.

Question No. 6

A $\mathbf{3 2 0} \mathbf{~ m m}$ square steel plate is 7 mm thick. It is simply supported along all sides and carries a uni-axial compressive stress. Determine the critical elastic and plastic buckling stresses. What is the influence of clamping the unloaded sides upon the plastic buckling stress? Take: $\mathrm{E}=210 \mathrm{GPA}, \mathrm{Y}=310 \mathrm{MPa}, \sigma_{n}=450 \mathrm{MPa}, v=$ 0.27 and $m=5$.

