Menofia University Second term-time: 3hrs Theory of Plasticity

Mech Design and Prod. Eng. Dept Post Graduate Master Level 600 Date: 18/06/2014 Total mark: 100

Answer all the following questions:

Question No.1

Show that for a simple homogenous, cylindrical extrusion the force acting upon the ram is given by: $F = YAr \ln (Ar/Ae)$ where Ar is the area of the ram, Ae the area of the extruded bar and Y is yield stress for rigid-plastic material. In a twostage, extrusion process a 20 mm billet is first produced from a 10% reduction to its original area. There after, the billet is extruded to 18 mm. Given that the true stress-natural strain law for the annealed material is expressed by a Hollomon law: $\sigma = 980 \varepsilon^{-.019}$, determine necessary for extrusion accounting for work Hardening.

Question No.2

Estimate the roll force and torque required to roll a 300 mm wide, annealed sheet from 4 mm to 3.5 mm thick between two rolls each of radius 175 mm. How is the force altered when the original area had been attained by a previous reduction of 10%? The plane strain, true stress versus natural strain curve is given by:

$$\sigma = K(A + \varepsilon^{p})^{n} \text{ or } \frac{\sigma}{\sigma_{\sigma}} = \left(1 + \frac{\varepsilon^{p}}{\varepsilon_{\sigma}}\right)^{n}$$

In which $\sigma_{0} = 2k = 200$ MPa, $\varepsilon_{0} = 0.05$ and $n = 0.25$.

Question No.3

The conditions when orthogonal machining a work hardening material are: rake angle $\alpha = 10^{\circ}$, cutting speed v = 0.5 m/s and depth of cut b = 0.2 mm. Assume an experimental value $\phi = 25^{\circ}$ for the shear angle with a rectangular shear zone of aspect ratio 10:1. Calculate the shear strain, the shear strain rate, and the inclinations of the resultant force R to the flank face and to the shear plane. Use the flow properties for the material given in the below figure.

Question No.4

Apply this equation $(\tau = \frac{F \cos \lambda}{A/\cos \phi} = \sigma \cos \phi \cos \lambda)$ to show when a tensile stress σ is applied to a single crystal, the critical resolved shear stress τ_{cr} is at a maximum for $\phi = \lambda = 45^{\circ}$. Plot the variation in τ_{cr} / σ when the slip plane is inclined at various angles to the stress axis.

Question No.5

An 800 mm long steel strut has a thin-walled, elliptical cross-section shown in Fig. The mean lengths of the major and minor axes are 80 and 30 mm respectively and the wall thickness is 3 mm. At its end fixings, Fig. 12.4a shows that the strut is free to rotate about a pin aligned with its y-axis but it is prevented from rotating about its x-axis by the rigid walls shown. Compare the allowable compressive plastic loads according to the Engesser, parabolic and Rankine-Gordon formula, using a safety factor of 1.5. For steel take $\sigma_0 = 300$ MPa, $\sigma_u = 450$ MPa, E = 210 GPa and n = 1/3.

Question No.6

A 320 mm square steel plate is 7 mm thick. It is simply supported along all sides and carries a uni-axial compressive stress. Determine the critical elastic and plastic buckling stresses. What is the influence of clamping the unloaded sides upon the plastic buckling stress? Take: E = 210 GPA, Y = 310 MPa, $\sigma_n = 450$ MPa, v =0.27 and m = 5.

Prof.Dr.Ahmed R.El-Sisi

Dr.Mahmoud El-wazeery