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NUMERICAL SIMULATION OF THE FLOW IN A SYMMETRICAL
DEEP-BOWL COMBUSTION CHAMBER OF A DIESEL ENGINE
CYLINDER DURING THE COMPRESSION STROKE
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ASBTRACT - This paper describes a method for predicting the unsteady axisymmetric
air {low in a deep bowel combustion chamber of the direct injection diesel engine
during the compression stcoke. The governing equations are the continuity and the
momentum equztions. A movable coordinate system is used 1n which these equations
are transformed. For the numerical simulation a finite difference algorithm developed
by the authers is used in which two different staggard, two dimensional and movabie
grids are used for the vector and scalar variables. The pressure is described indirectly
through the continuity equation and the ADI-method is used for thc nteration of
it. A computer program EBSTR Is made and used {or the numerical computation.
The computed results which are drawn with the use of EBSTR are used to show
the main charactecistics of the flow.

1- INTRODUCTION

For many years research is being done on the air flow in the cylinder space
of reciprocating combustion engines. This lield is very important, as the fuel mixing
to the air, ignitien and combustion as well as the heat transfer to the cylinder
walls are substantially influenced by the air motion in the cylinder specially during
the latest portion of the compression stroke between 30° before top dead center
(TDC) and the TDC. However the [low in the cylinder is unsteady and turbulent
and has not been clarified {fully.
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Several different approaches have been taken in computing the flow and
combustion processes in the reciprocating combustion engines. Cosman et al [1)
Ramos et al {2} computed the tlow during the intake stroke treating it as an axi-
symmetcic three dimensional flow and using a two equation model for turbulence.
Griffin et al [3,5]) computed two dimensional Jaminar flow in a cyiinder at low Reynold
numbers, Seppen [5} developed a two dimensional model 1o represent the air motion
during the compression stroke of an engine with flat piston.

In the present study the turbulent flow generated by the movement of
the pisten from BDC to TDC during compression stroke in a deep bowl axisymmetric
combustion chamber in the piston is predicted. The prediction was carried out using
a linite difference algorithm developed by the authors [6] to solve the continuity
and rmomentum equations. This paper describes this algorithm and gives the result
of sample calculation.

2- MATHEMATICAL MODEL

2.1. Governing Egquations

In the formulation a cylindrical coordinates (r,0,z) has been employed,
in which velocity components are denoted by u,v,w..as shown in Fig.l. Assuming that
the instantaneous fluid density is spatially uniform over the flow field but depenas
on time, the momwntum and continuity eguations for the two dimensional unsteady
inviscid axisymmetric flow will be as follows :

du By v dy 3p .
-a-t- ¥ u ‘-a'—"- - F- * :'}--z + '-a-r [} {i)
By 8y w9y 0 (2}
dt 3r r dz
Jw dw a 2
e TR ¥ oW o= g ---E = 0 %)
I Bdyr 3w 1 dQ_ )
G T T =0 “

where p is the pressure divided by the density.

2,2. Integration area

Figs. 1,2 show the integration area with its boundaries which consists
of the axis, cylinder head, cylinder wail, piston crown, bow! wall and bowl bottom.

During the motion of the piston in a fixed z coordinate the boundaries
of the integration area will vary with the time, to avord an incemplete coverage
of the wall boundaries on the computational grid which will be discussed in 3.3,
a movable coordinate z'is used in the axial direction to make the boundaries of
the integration arez time independent where:

__Z_' < v
= g g o z:Ecl, 0% z35h

Z =z & - b clsz’5c1+b!,h~f—z&h-b|

The governing equations will be transformed to the time movable coordinate
systemn in which every peint has an axial velocity in the cylinder, that is the same
velocity of the grid point wg in figure 2. The time derivative for the moving coordmate

will 1ake the following [orm :
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- i__, 3. (51
31l mov = Tl fixed *Ye 8%
where wg = -E- wh for 0g%zxh
wg wp for hztzgh + bl

This will change the governing equations (1)-{(3) by only an excess derivative
term n the convection form in the axial direction.

2.3. The Boundary and lnitial Conditions
The boundary conditions will be expressed as follows :

u =0,v = 0,53—\3"=0 and-g-?=0 at the axis where r = 0.

r .
u = 0 at the cylinder and howl walls, w = ¢ at the cylinder head and w = w
at the piston crown aad the bowl bottom. P
The initial cocndittons are given to the gquantities at the time of inlet valve
closing as & forced vortex having a swirl ratio w, which is assumed to be constant

in the axial girectien.

3. SOLUTION ALGORITHM

3.1. Reformulation of the Governing Eguations

The momentum equations (1)-(3} in the movable coordinate system can
be expressed with the use of the operators N, G, and the vecor u which will be
discussed later in the following form :

_____ = g - 6
N(u,wg } Gp (6)

£ u
where u =| v
w

With the same procedure and the use of the operater D 1he continuity
equation (#) will be expressed as follows :

B & -g.? -0 7

The definmitions of the convection operator N, the gradient operator G and
the divergent operator [ are obtained from the compacison of equations (6) and
(7} with equations (1}-{3). This will give with the use of T, g and [ lor the vector
and scalar quantities, the operators N, G and D as follows :

2
v
MTE) = -u Y gy 28w @
ac/dr °
qf / 3z
DG - - Sluch 9w (10)
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e
3.2. Method of Solution

For the known pressure field 1t is so easy to solve the momentum equations
and get the velocity components, but to know the pressure field that is the probiem.
The pressure will be here described indirectly through the continuity equation, then
the correct pressure field is substituted in the momentum equations, the resultant
velocities must satisfy the continuity eguation. This procedure will De used as follows:

The simplest explicit one direction methed is used for the time derivatives
in equations {6} by which the velocity U at the time t+dt is calculated from the
velocity ¢'at the time t as follows :

3. 2Y g (an
3t

From the fact that the new U at the time t « 8 1 must satisfy the continuity
equation {7} then by substituting § in eguation (7) it will take the following form

- 3 | dg
D+ dt 3t Yo -éh it ° 0 {12)
Taken inte consideration equation (6} and with the use ol the relation
g =0+« 31 N l’f,wg) {13

For the convection term and also P= p.dt equation (12) will give for the
pressure the foliowing equation

DGP =D + - d3. (14}

Equation (14} is an elliptic eguation from the type of poission's equation.
It is used to calculate p by the known right hand side. This equation will be selved
by iteration and the ADI-method [7) wiil be used lor this purpose.

By the known resultant value of P the velocity U can be calculated by
the following equation

3 :=9- ¢p {15}

3.3, Discretisation of the Diiferential Equations

For the discretisation of the governing equations two different two-dimen-
sional staggard grids in the way discussed by Stephens et al [8] are used for the
vector and scalar variables as shown in figure 2. The crosses {+) represent the points
of the grid Qi for the vector field and the points {.) represent the points of the

geid ?LG for the scalar field. The calculation of the convection terms and the pressure

gradient will be at the points of the grid . and the satisfaction of the continuity
equation will be at the points of the grid ﬁG‘

Variable axial spacing is used to allow for the change in the distance between
the cylinder head and the piston crown, while a fixed grid system is used for the
space in the piston bowl. The number of the axial nodes during the compression
was made variable to avoid the extremely small spacing between the node pointe
and to make the rano of the axial spacing in the head piston space to that in the
piston bowl within the range of 1.5 to 1/1.5. This condition was satisfied either
by doubling the spacing in the head piston space or by halfing it in the piston bowl

To express the discrete operaters which are used in equations (13)-{1%)
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and also in the boundary conditions without making many special forms, the following
relations will be taken into consideration :

a for a>?0 d for £ &k <L
(a)+ = [ dk = < 3
'
0 dor as<?® db for LssksLa
(k-1)
-------- w for k & L
(L3- 1y P 3
W‘k =
g
wp for k » Lj
r. = (l - ” dr ' l'.i = (1--2_) dr

1

with these relations the convection operator N takes the form

- ] + - - + -
[N@w Ty, = d (g 07 Gy g T vteuy 0 G g T

+ - - 1 + -
+ E (wi,k'wgk} SRCTRET R 3, (wgk'wi,k) L Y ke
2
- ) ik
U P T Vi ik (16)
and the gradient field Gf will be
Gy Co i #0 @y T )

CCtTip = gq 0 (17)
! d_ {1, +f { o
r ik ik T k- T S1Lk-1)

Figure 3 shows the values of the function f which is used in equation {17)

to calculate the gradient field f at the point Py € g To make the normal com-

ponent at the boundary peint equal zero, the values of the scalar field f outside

the integration area was make equal to the values of it at the nside poinis (mirror

image at the boundary) and at the point P,y at the axjs where r-0 the scalar field
L}

was made to take the value plr,z)=-pl-r,2).
Figure & shows the velocity components which were used to calculate

the discrelte_ value of the diverging operator Did at the point Py € ﬁG according
to the definition shown in equation {10} as follows : !

- % fi
[ D3] ik ° ~2-;-.- [ .é-l- (,_,i . Lk Mg e d) - a:r- {u ik Uikl 3]
i r

f : {18}
Vv ket Yieax!? A Wik s 1 Yik
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i~ NUMERICAL EXAMPLE

The computer program EBSTR is written for this system in FORTRAN and
the de_tajled_ discussion is found in ref. [9) The computation was made for a small
size direct injection diese! engine having a cylinder diameter of 120 mm, 3 stroke
of 102.3 mm, a ratio of crank arm to connecting rod of 0.27, cylinder height at
BDC is 120 mm, diammeter ratic of bowl to cylinder is 0.4, bowl height is 37.5
mm, speed of 2400 rpm and Wy, = 0.6.

Figure 5 shows the resuitant velocity in the r-z plane by way of vectors and

L] L)
contours respectively tor different crank angles from 120 after BDC to 180 (TDC)
for the compression stroke. The points show the measured positions while the lines
indicate the magnitude and direction of the velocities. The velacity distribution
in this figure is drawn relative to the piston surface. Figure 5 shows that as the
piston goes up the air is forced to flow into the bow! and forms a radial inward
squish flaw. In the earlier stages of this flow the squish air jet is strongly bent
in the bow! entrance owing 1o a centrifugal force due to the swirl, and finally a
clockwise vortex flow is produced at the TDC.

Figure 6 shows the accopanied pressure differocnce of the flow. It is well known
{rom the figure that the maximum ditierence in the pressure takes about 3% of
the absciute pressure which makes the assumption that the instantanecus fluid depsity
is spatially uniform over the flow field 10 be valid.

Figure 7 shows the tangential velocity for 120, 160, 170 and 180° Cca during
the compression stroke. The tangential velocity is proportional to the radivs at
the moment when the inlet valve closes. This velocity becomes aiways high at the
bowl periphery as the compression proceeds. [t increases from 4.8 m/s at BDC 1o
3.4 mis at 120°CA after BOC to about 13.2 m/s at the TDC. This increase is about
300% during the compression stroke. In the piston cavity and owing to the secondary
flow in the r-z plane the profile of the periphery velocity remains no longer in a
simple solid body roration.

5- CONCLUSIONS
In the present study a finite diflerence method has been used for performing
a numerical simulation of the in-cylinder {low to enable prediction of the fluid flow
in the engine cylinders. This method has been applied to simulate the two dimen-
sional air flow in the axisymmetric deep-bow! combustion chamber diesel engine
during the compression stroke. The results are satisfactory well reproducing global
features of the fluid motions. Thus it can be safely said that the numerical simulation
- method is a powerful tool to explore the in-cylinder unsteady flow and it can be
also extended and used to simulate the futly three-dimensioral in-cylinder unsteady
flow during the {our strokes.

6~ NOMENCLATURE

by bowl height {depth}

< total cylinder length = h at BDC

dy, » dc grid spacing in z-direction in bow! and cylinder
d, grid spacing in r-direction

3] Divergent operator

i scalar field

G gradient operator

h piston position from the cylinder top

Ll"“’Lb number of mish points in z and r directions
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convection operator
pressure / density
p-&t

time

velocity vegtor

W radial, tangential and axial velocity components

fixed and movable axial coordinates

density

crank angle

swirl catio, the ratip ol swirl angular velocity to that of the engine shali
REFERENCES

Gosman, A.D. and John, R.J.R., SAE paper No. 800091 (1980)
Ramos, 1.1.,, Humphery, 3.A.C. and Sirignano, N.A., SAE paper Mo, 790356 (1979)

Griliin, M.D., Anderson, J.D., Diwaker, R., MNavier-Stokes soiutions of flow field
in an I.C.E. AIAA Journal, Yol 14 Dec. 1976 pp 1663-1666,

Diwakar, R., Anderson, J.D., Grilfin, M.D., Inviscid solutions of the flow field
in an .C.E. AIAA Journal, Yol. )&, Dec. 1976, pp 1667-1663.

Scppen, J.J., A study of flow field phenomena n I.C.E. ph.D. thesis, TH Delft,
october 1982,

EL Kady, M.5., Berechnung symmetrischer und unsymmetrischer Zylinder-Brenn-
raum-Strémungen in Dieseimotoren beitm Verdichtungshub, Dissertation, TU
Dresden March 1935,

Peaceman, D.W., Rachford, H.H., The numerical solution of parabolic and eliiptic
differential equations, 3. Soc. Indust. Appl. Math. 3, 28-41, 1955,

Stephens, A.S., Bell, J.B., Solomon. J.M., A linite difference formulation {or
the incompressible N. 5. Equation, J. of computational physics, Vol. 53 {1984%)
pp 152-172

EL Kady, M.5., Anleitung zur Nutzung der Programme {ur die Berechnung der
Zylinder-8rennraum-Strémungen in Dieselmotoren beim Yerdichtungshub., Bericht
No. 638, TU Dresden Sektion 12, WB Siromungstechnik,



M. 27 M.S5,EL-Kad , H.J.Mascheck & A. Hoche

T
h
Clbrl-
1
L
Fig: 1 Integration area
dr dr
. d
Fiahar | Tk k-1
Py
- - d
biot ok s,k k

[ —_ Ly

1wl
Hwl N . | . T
4 . . .
r L} » » h(t]
z * : ]l
f . . s
L : . i
5 -8 4 w_
i
"- .
. ~€ i
'.4 =
= "~
: Fe
Fig. 2 Computationel
grid arrangament
ik “Yiaa,k
4.
Mk MOH'E
dk Q‘B'i'k
s WIS Yiel, ke
"l.kn 1"'1+'i.)(|-1

Fig. 3 Thes valusse of the function
f which 18 used to calcul-

ate the gradiesnt fileld Gf

Fig, 4 The wvelocity componants
which 1s used to calcu-
late Eha discrete value

of Du



28

1987

12, NO. 2. Dec.

Mansoura Engineering Journal (MEJ]) VOL.
contours

plane by way of vec-

Fig, 5 The resultaﬁt
tors and

velocity 1in the r-z

.

P = 170°

\
\
Mo
LY

m/s

TN - = e

“ = st gD
2t B o 4 IR

I wnanan
DUODOWW X

iR

f/-...rrli\\\\.

BNt

S, S ST

TN

(=1

b

o

g vy ~ « 4 0 1

v = — =~




M. 29 M.5.EL-kad , H.J.Mascheck & A, Hoche

Fig. &
The pressura difference
of the flow for 120" -

180°CA after BOC during
compraasion atroke
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Flg. 7

The tangentisl velocity
for 1200 - 18Q9CA after
BOC during compression
stroke
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